SEARCH

SEARCH BY CITATION

Keywords:

  • Anopheles;
  • olfactory;
  • arrestin;
  • malaria

Abstract

Olfaction influences many insect behaviours including mate seeking and host selection. The molecular machinery underlying insect olfactory systems is a G protein-coupled receptor pathway that, in addition to activation, requires adaptation for olfactory sensitivity and discrimination. We have previously identified ARR1 (henceforth AgARR1), a sensory arrestin from the malaria vector mosquito Anopheles gambiae that has been postulated to modulate olfactory adaptation. This report describes three additional arrestin family members including ARR2 (henceforth AgARR2), which is similar to previously characterized insect sensory arrestins and is expressed at significantly higher levels in the antennae of male vs. female A. gambiae mosquitoes. This finding is consistent with the hypothesis that AgARR2 may be important for the regulation of olfactory-driven behaviours particular to male mosquitoes.