The role of males in the dynamics of ungulate populations

Authors

  • Atle Mysterud,

    1. Department of Biology, Division of Zoology, University of Oslo, PO Box 1050 Blindern, N-0316 Oslo, Norway, and
    Search for more papers by this author
  • Tim Coulson,

    1. Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EG, UK
    Search for more papers by this author
  • Nils Chr. Stenseth

    Corresponding author
    1. Department of Biology, Division of Zoology, University of Oslo, PO Box 1050 Blindern, N-0316 Oslo, Norway, and
      Nils Chr. Stenseth, Department of Biology, Division of Zoology, University of Oslo, PO Box 1050 Blindern, N-0316 Oslo, Norway. Tel: +47 22 85 45 61; Fax: +47 22 85 46 05; E-mail: n.c.stenseth@bio.uio.no
    Search for more papers by this author

Nils Chr. Stenseth, Department of Biology, Division of Zoology, University of Oslo, PO Box 1050 Blindern, N-0316 Oslo, Norway. Tel: +47 22 85 45 61; Fax: +47 22 85 46 05; E-mail: n.c.stenseth@bio.uio.no

Summary

  • 1In this review, we focus on how males can affect the population dynamics of ungulates (i) by being a component of population density (and thereby affecting interpretation of log-linear models), and (ii) by considering the mechanisms by which males can actively affect the demographic rates of females.
  • 2We argue that the choice of measure of density is important, and that the inclusion or exclusion of males into models can influence results. For example, we demonstrate that if the dynamics of a population can be described with a first-order auto-regressive process in a log-linear framework, the asymmetry between the effects of females on the male dynamics and vice versa can introduce a second order process, much in the same way that the interaction between disease and host or predator and prey can. It would be useful for researchers with sufficient data to explore the affects of using different density measures.
  • 3In general, even in harvested populations with highly skewed sex ratios, males are usually able to fertilize all females, though detailed studies document a lower proportion of younger females breeding when sex ratios are heavily female biased. It is well documented that the presence of males can induce oestrus in females, and that male age may also be a factor. In populations with both a skewed sex ratio and a young male age structure, calving is delayed and less synchronous. We identify several mechanisms that may be responsible for this.
  • 4Delayed calving may lower summer survival and autumn masses, which may lead to higher winter mortality. If females are born light, they may require another year of growth before they start reproducing. Delayed calving can reduce future fertility of the mother. As the proportion of calves predated during the first few weeks of life is often very high, calving synchrony may also be an important strategy to lower predation rates.
  • 5We argue that the effects of males on population dynamics of ungulates are likely to be non-trivial, and that their potential effects should not be ignored. The mechanisms we discuss may be important – though much more research is required before we can demonstrate they are.

Ancillary