SEARCH

SEARCH BY CITATION

References

  • Bailey, N. (1975) The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London, UK.
  • Bartlett, M. (1956) Deterministic and stochastic models for recurrent epidemics. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV (ed. J.Neyman), pp. 81109. University of California Press, Berkeley, CA.
  • Bharucha-Reid, A. (1956) On the stochastic theory of epidemics. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV (ed. J.Neyman), pp. 111119. University of California Press, Berkeley, CA.
  • Van Den Bosch, F., Metz, A. & Diekmann, O. (1990) The velocity of spatial population expansion. Journal of Mathematical Biology, 28, 529565.
  • Dietz, R., Heide-Jorgensen, M.-P. & Harkonen, T. (1989) Mass deaths of harbor seals (Phoca vitulina) in Europe. Ambio, 18, 258264.
  • Durrett, R. & Levin, S. (1994) Stochastic spatial models: a user's guide to ecological applications. Philosophical Transactions of the Royal Society of London, Series B, 343, 329350.
  • Edelstein-Keshet, L. (1988) Mathematical Models in Biology. Random-House, New York, NY.
  • Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2. Wiley, New York, NY.
  • Ferguson, N., May, R. & Anderson, R. (1997) Measles: persistence and synchronicity in disease dynamics. Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions (eds D.Tilman & P.Kareiva), pp. 137157. Princeton University Press, Princeton, NJ.
  • Foley, J.E., Poland, A., Carlson, J. & Pedersen, N.C. (1997) Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 13071312.
  • Gardiner, C. (1985) Handbook of Stochastic Methods. Springer, New York, NY.
  • Grenfell, B., Bolker, B. & Kleckowski, A. (1995) Seasonality, demography and the development dynamics of measles in developed countries. Epidemic Models: Their Structure and Relation to Data (ed. D.Mollison), pp. 248268. Cambridge University Press, Cambridge, UK.
  • Gyllenberg, M., Hanski, I. & Hastings, A. (1997) Structured metapopulation models. Metapopulation Biology (eds I.Hanski & M.Gilpin), pp. 93122. Academic Press, San Diego, CA.
  • Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Bulletin of Journal of Linnaean Society, 42, 1738.
  • Hanski, I., Foley, P. & Hassell, M. (1996) Random walks in a metapopulation: how much density dependence is necessary for long-term persistence? Journal of Animal Ecology, 65, 274282.
  • Harrison, S. (1991) Local extinction in a metapopulation context: an empirical evaluation. Metapopulation Dynamics: Empirical and Theoretical Investigations (eds M.Gilpin & I.Hanski), pp. 7388. Academic Press, London, UK.
  • Harrison, S. & Quinn, J. (1989) Correlated environments and the persistence of metapopulations. Oikos, 56, 293298.
  • Harrison, S. & Taylor, A. (1997) Empirical evidence for metapopulation dynamics. Metapopulation Dynamics: Empirical and Theoretical Investigations (eds M.Gilpin & I.Hanski), pp. 2742. Academic Press, London, UK.
  • Hethcote, H. (1976) Qualitative analyses of communicable disease models. Mathematical Biosciences, 28, 335356.
  • Ims, R. & Yoccoz, N. (1997) Studying transfer processes in metapopulations. Emigration, migration, and colonization. Metapopulation Biology. Ecology, Genetics, and Evolution (eds I.Hanski & M.Gilpin), pp. 247265. Academic Press, San Diego, CA.
  • Johnson, N.L., Kotz, S. & Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 1. Wiley, New York, NY.
  • Karlin, S. & Taylor, H. (1975) A First Course in Stochastic Processes. Academic Press, London, UK.
  • Kermack, W. & McKendrick, A. (1927) Contributions to the mathematical theory of epidemics. Royal Statistical Society Journal, 115, 700721.
  • Lajmanovich, A. & Yorke, J. (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Mathematical Biosciences, 28, 221236.
  • Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of Entomological Society of America, 15, 237240.
  • MacArthur, R. & Wilson, E. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.
  • May, R. & Anderson, R. (1984) Spatial heterogeneity and the design of immunization programs. Mathematical Biosciences, 72, 83111.
  • Mollison, D. (1981) The importance of demographic stochasticity in population dynamics. The Mathematical Theory of the Dynamics of Biological Populations II (eds R.Hiorns & D.Cooke), pp. 99107. Academic Press, London, UK.
  • Mollison, D. (1991) Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences, 107, 255287.
  • Mollison, D. & Kuulasmaa, K. (1985) Spatial epidemic models: theory and simulations. Population Dynamics of Rabies in Wildlife (ed. P.Bacon), pp. 291309. Academic Press, London, UK.
  • Murray, J. (1989) Mathematical Biology. Springer, New York, NY.
  • Nisbet, R. & Gurney, W. (1982) Modelling Fluctuating Populations. Wiley, New York, NY.
  • Paul, J. & Freese, H. (1933) An epidemiological study of the ‘common cold’ in an isolated arctic community (Spitzbergen). American Journal of Hygiene, 17, 517.
  • Pedersen, N. (1995) The history and interpretation of feline coronavirus serology. Feline Practice, 23, 4652.
  • Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A. & Barker, A. (1981) An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. American Journal of Veterinary Research, 42, 368477.
  • Poland, A., Vennema, H., Foley, J.E. & Pedersen, N.C. (1996) Feline infectious peritonitis is caused by simple mutants of feline enteric coronavirus (FECV) that arise frequently during the course of primary FECV infection. Journal of Clinical Microbiology, 34, 31803184.
  • Shibli, M., Gooch, S., Lewis, H. & Tyrrell, D. (1971) Common colds on Tristan da Cunha. Journal of Hygiene, Cambridge, 69, 255262.
  • Sjogren Gulve, P. (1994) Distribution and extinction patterns within a northern metapopulation case of the pool frog, Rana lessonae. Ecology, 75, 13571367.
  • Thomas, C. & Hanski, I. (1997) Butterfly metapopulation. Metapopulation Biology (eds I.Hanski & M.Gilpin), pp. 359386. Associated Press, San Diego, CA.