A landscape-scale test of the predictive ability of a spatially explicit model for population viability analysis



  • 1 Although population viability analysis (PVA) is widely employed, forecasts from PVA models are rarely tested. This study in a fragmented forest in southern Australia contrasted field data on patch occupancy and abundance for the arboreal marsupial greater glider Petauroides volans with predictions from a generic spatially explicit PVA model. This work represents one of the first landscape-scale tests of its type.
  • 2 Initially we contrasted field data from a set of eucalypt forest patches totalling 437 ha with a naive null model in which forecasts of patch occupancy were made, assuming no fragmentation effects and based simply on remnant area and measured densities derived from nearby unfragmented forest. The naive null model predicted an average total of approximately 170 greater gliders, considerably greater than the true count (n = 81).
  • 3 Congruence was examined between field data and predictions from PVA under several metapopulation modelling scenarios. The metapopulation models performed better than the naive null model. Logistic regression showed highly significant positive relationships between predicted and actual patch occupancy for the four scenarios (P = 0·001–0·006). When the model-derived probability of patch occupancy was high (0·50–0·75, 0·75–1·00), there was greater congruence between actual patch occupancy and the predicted probability of occupancy.
  • 4 For many patches, probability distribution functions indicated that model predictions for animal abundance in a given patch were not outside those expected by chance. However, for some patches the model either substantially over-predicted or under-predicted actual abundance. Some important processes, such as inter-patch dispersal, that influence the distribution and abundance of the greater glider may not have been adequately modelled.
  • 5 Additional landscape-scale tests of PVA models, on a wider range of species, are required to assess further predictions made using these tools. This will help determine those taxa for which predictions are and are not accurate and give insights for improving models for applied conservation management.