How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms


Brian Moss, School of Biological Sciences, Derby Building, University of Liverpool, Liverpool L69 3GS, UK (fax 0151 7945017; e-mail


  • 1Climate is changing. Predictions are for at least a 3 °C rise in mean temperature in northern Europe over the next century. Existing severe impacts of nutrients and inappropriate fish stocking in freshwater systems remain.
  • 2Effects of warming by 3 °C above ambient, nutrient addition and the presence or absence of sticklebacks Gasterosteus aculeatus were studied in experimental microcosms dominated by submerged plants, mimicking shallow lake ecosystems.
  • 3Warming had considerably smaller effects on the phytoplankton community than did fish and nutrients. It had very minor effects on chlorophyll a and total phytoplankton biovolume. However, it significantly decreased the biovolumes of Cryptophyceae (a major component in the controls) and Dinophyceae. Contrary to expectation, warming did not increase the abundance of blue-green algae (cyanophytes). Warming decreased the abundances of Cryptomonas erosa (Cryptophyceae) and Oocystis pusilla (Chlorophycota) and increased those of two other green algae, Tetraedron minimum and Micractinium pusillum. It had no effect on a further 17 species that were predominant in a community of about 90 species.
  • 4Fish and nutrients, either together or separately, generally increased the crops of most of the 21 abundant species and of the algal groups. Exceptions were for diatoms and chrysophytes, which were very minor components of the communities. Fish, but neither nutrients nor warming, increased the number of species of phytoplankton detected. This was probably through removal of zooplankton grazers, and parallels terrestrial studies where the presence of top predators, by controlling herbivores, leads to increased plant diversity.
  • 5There was no particular pattern in the taxonomy or biological characteristics of those species affected by the treatments. In particular, there was no link between organism size (a surrogate for many important biological features of phytoplankton species) and the effects of warming, nutrient addition or presence or absence of fish. However, all species were relatively small and potentially vulnerable to grazing.
  • 6Synthesis and applications. The results suggest that fears of an increasing abundance of cyanophytes with current projections of global warming may be unrealized, at least in shallow unstratified lakes still dominated by macrophytes. However, they emphasize that eutrophication and fish manipulations remain very important impact factors that determine the abundance of phytoplankton and subsequent problems caused by large growths.