Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum


B.W. Bogan, Gas Technology Institute, 1700 South Mount Prospect Rd., Des Plaines, IL 60018, USA (e-mail:


Aims: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs).

Methods and Results: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil.

Conclusions: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane).

Significance and Impact of the Study: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons.