• 1
    Banerjee, A., Dubnau, E., Quemard, A., Balasubamanian, V., Um, K.S., Wilson, T., De Collins, D., Lisle, G. and Jacobs, W.R. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227230.
  • 2
    Bidnenko, E., Mercier, C., Tremblay, J., Tailliez, P. and Kulakauskas, S. (1998) Estimation of the state of the bacterial cell wall by fluorescent in situ hybridisation. Applied and Environmental Microbiology 64, 30593062.
  • 3
    Boshoff, H.I.M. and Mizrahi, V. (2000) Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. Journal of Bacteriology 182, 54795485.
  • 4
    Bottger, E.C. (1994) resistance to drugs targeting protein synthesis in mycobacteria. Trends in Microbiology 2, 416421.
  • 5
    Boyle-Vavra, S., Labaschinski, H., Ebert, C.C., Ehlert, K. and Daum, R.S. (2001) A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrobial Agents and Chemotherapy 45, 280287.
  • 6
    Brennan, P.J. and Nikaido, H. (1995) The envelope of mycobacteria. Annual Reviews of Biochemistry 64, 2963.
  • 7
    Buckland, A.G. and Wilton, D.C. (2000) The antibacterial properties of secreted phospholipases A2. Biochimica et Biophysica Acta 1488, 7182.
  • 8
    Chambers, H., Moreau, D., Yajko, D., Miick, C., Wagner, C., Hackbarth, C., Kocagoz, S., Rosenberg, E., Hudley, W.K. and Nikaido, H. (1995) Can penicillins be used to treat tuberculosis? Antimicrobial Agents and Chemotherapy 39, 26202624.
  • 9
    Cheng, S.J., Thibert, L., Sanchez, T., Heifets, L. and Zhang, Y. (2000) pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrobial Agents and Chemotherapy 44, 528532.
  • 10
    Chopra. I. (1998) Research and development of antibacterial agents. Current Opinion in Microbiology 1, 495501.
  • 11
    Christensen, H., Garton, N.J., Horobin, R.W., Minnikin, D.E. and Barer, M.R. (1999) Lipid domains of mycobacteria studied with fluorescent molecular probes. Molecular Microbiology 31, 1156111572.
  • 12
    Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H. and Hiramatsu, K. (2000) Contribution of thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrobial Agents and Chemotherapy 44, 22762285.
  • 13
    Daffe, M. and Draper, P. (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Advances in Microbial Physiology 39, 131203.
  • 14
    Deng, L., Mikusova, K., Robuck, K.G., Scherman, M., Brennan, P.J. and McNeill, M.R. (1995) Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrobial Agents and Chemotherapy 39, 694701.
  • 15
    Dmitriev, B.A., Ehlers, S., Rietschel, E.T. and Brennan, P.J. (2000) Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. International Journal of Medical Microbiology 290, 251258.
  • 16
    Draper, P. (1998) The outer parts of the mycobacterial envelope as permeability barriers. Frontiers of Biosciences 3, 12531261.
  • 17
    Foreman-Wykert, A.K., Weinrauch, Y., Elsbach, P. and Weiss, J. (1999) Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria. Journal of Clinical Investigation 103, 715721.
  • 18
    Friedrich, C.L., Moyles, D., Beveridge, T.J. and Hancock, R.E. (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrobial Agents and Chemotherapy 44, 20862092.DOI: 10.1128/aac.44.8.2086-2092.2000
  • 19
    Goldman, R.C. and Gange, D. (2000) Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. Current Medicinal Chemistry 7, 801820.
  • 20
    Haemers, A., Leyen, D.C., Bollaert, W., Zhang, M.O. and Pattyn, S.R. (1990) Influence of N substitution on antimycobacterial activity of ciprofloxacin. Antimicrobial Agents and Chemotherapy 34, 496497.
  • 21
    Honore, N. and Cole, S.T. (1994) Streptomycin resistance in mycobacteria. Antimicrobial Agents and Chemotherapy 38, 238242.
  • 22
    Jackson, M., Raynaud, C., Lanéelle, M.-A., Guilhot, C., Laurent-Winter, C., Ensergueix, D., Gicquel, B. and Daffé, M. (1999) Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Molecular Microbiology 31, 15731587.
  • 23
    Jarlier, V. and Nikaido, H. (1990) Permeability to hydrophilic solutes in Mycobacterium chelonei. Journal of Bacteriology 172, 14181423.
  • 24
    Jarlier, V. and Nikaido, H. (1994) Mycobacterial cell walls: structure and role in natural resistance to antibiotics. FEMS Microbiology Letters 123, 1118.
  • 25
    Jarlier, V., Gutmann, L. and Nikaido, H. (1991) Interplay of cell wall barrier and β-lactamase activity determines high resistance to β-lactam antibiotics in Mycobacterium chelonae. Antimicrobial Agents and Chemotherapy 35, 19371939.
  • 26
    Kilburn, J.O. and Greenberg, J. (1977) Effect of ethambutol on the viable cell count in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy 11, 534540.
  • 27
    Koch, A.L. (2000) The exoskeleton of bacterial cells (the sacculus): still a highly attractive target for antibacterial agents that will last for a long time. Critical Reviews in Microbiology 26, 135.
  • 28
    Kusser, W., Zimmer, K. and Fiedler, F. (1985) Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. European Journal of Biochemistry 151, 601605.
  • 29
    Lei, B., Wei, C.J. and Tu, S.C. (2000) Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inhA inhibitor. Journal of Biological Chemistry. 275, 25202526.
  • 30
    McDonnell, G. and Russell, A.D. (1999) Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews. 12, 147179.
  • 31
    Mdluli, K., Swanson, J., Fischer, E., Lee, R.E. and Barry, C.E. (1998) Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium tuberculosis . Molecular Microbiology 27, 12231233.DOI: 10.1046/j.1365-2958.1998.00774.x
  • 32
    Meier, A., Sander, P., Schaper, K.-J., Scholz, M. and Bottger, E.C. (1996) Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy 40, 24522454.
  • 33
    Mikusova, K., Slayden, R.A., Besra, G.S. and Brennan, P.J. (1995) Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrobial Agents and Chemotherapy 39, 24842489.
  • 34
    Mukhopadhyay, S. and Chakrabarti, P. (1997) Altered permeability and β-lactam resistance in a mutant of Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy 41, 17211724.
  • 35
    Noble, W.C., Virani. Z. and Cree, R.G. (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 72, 195198.
  • 36
    Peschel, A., Vuong, C., Otto, M. and Gotz, F. (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrobial Agents and Chemotherapy 44, 28452847.DOI: 10.1128/aac.44.10.2845-2847.2000
  • 37
    Pfeltz, R.F., Singh, V.K., Schmidt, J.L., Batten, M.A., Baranyk, C.S., Nadakavukaren, M.J., Jaayaswal, R.K. and Wilkinson, B.J. (2000) Characterisation of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrobial Agents and Chemotherapy 44, 294303.DOI: 10.1128/aac.44.2.294-303.2000
  • 38
    Piddock, L.J.V., Williams, K.J. and Ricci, V. (2000) Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy 45, 159165.
  • 39
    Poole, K. (2000) Efflux-mediated resistance to fluoroquinolones in Gram-positive bacteria and the mycobacteria. Antimicrobial Agents and Chemotherapy 44, 25952599.
  • 40
    Quinting, B., Reyrat, J.M., Monnaie, D., Amicosante, G., Pelicic, V., Gicquel, B., Frere, J.M. and Gelleni, M. (1997) Contribution of beta-lactamase production to the resistance of mycobacteria to beta-lactam antibiotics. FEBS Letters 406, 275278.DOI: 10.1016/s0014-5793(97)00286-x
  • 41
    Rastogi, N., Goh, K.S. and David, H.L. (1990) Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrobial Agents and Chemotherapy 34, 759764.
  • 42
    Raynaud, C., Laneelle, M.A., Senaratne, R.H., Draper, P., Laneelle, G. and Daffe, M. (1999) Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology-UK 145, 13591367.
  • 43
    Rosamond, J. and Allsop, A. (2000) Harnessing the power of the genome in the search for new antibiotics. Science 287, 19731976.DOI: 10.1126/science.287.5460.1973
  • 44
    Russell, A.D. (1998) Mechanisms of bacterial resistance to antibiotics and biocides. Progress in Medicinal Chemistry 35, 133197.
  • 45
    Russell, A.D. (1999) Bacterial resistance to disinfectants: present knowledge and future problems. Journal of Hospital Infection 43, S57S68.
  • 46
    Ruusala, T. and Kurland, G.C. (1984) Streptomycin preferentially perturbs ribosomal proofreading. Molecular and General Genetics 198, 100104.
  • 47
    Scherrer, R. and Gerhardt, P. (1971) Molecular sieving by the Bacillus megaterium cell wall and protoplast. Journal of Bacteriology 107, 718735.
  • 48
    Senaratne, R.H., Mobasheri, H., Papavinasasundaram, K.G., Jenner, P., Lea, E.J. and Draper, P. (1998) Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. Journal of Bacteriology 180, 35413547.
  • 49
    Sieradski, K. and Tomasz, A. (1997) Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus . Journal of Bacteriology 179, 25572566.
  • 50
    Silva, P.E.A., Bigi, F., Santangelo, M.P., Romano, M.I., Martin, C., Cataldi, A. and Ainsa, J.A. (2001) Characterisation of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy 45, 800804.
  • 51
    Smith, T.L. and Jarvis, W.R. (1999) Antimicrobial resistance in Staphylococcus aureus. Microbes and Infection 1, 795805.
  • 52
    Takayama, K. and Kilburn, J.O. (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy 33, 14931499.
  • 53
    Trias, J., Jarlier, V. and Benz, R. (1992) Porins in the cell wall of mycobacteria. Science 258, 14791481.
  • 54
    Trias, J. and Benz, R. (1994) Permeability of the cell wall of Mycobacterium smegmatis. Molecular Microbiology 14, 283290.
  • 55
    Vilcheze, C., Morbidoni, H.R., Weisbrod, T.R., Iwamoto, H., Kuo, M., Sacchettini, J.C. and Jacobs, W.R. (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. Journal of Bacteriology 182, 40594067.DOI: 10.1128/jb.182.14.4059-4067.2000
  • 56
    Walberg, M., Gaustad, P. and Steen, H.B. (1999) Uptake kinetics of nucleic acid targeting dyes in S. aureus, E. faecalis and B. cereus: a flow cytometric study. Journal of Microbiological Methods 35, 167176.DOI: 10.1016/s0167-7012(98)00118-3
  • 57
    Zhang, Y., Scorpio, A., Nikaido, H. and Sun, Z. (1999) Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. Journal of Bacteriology. 181, 20442049.