The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa


Michael J. Lawes, The Forest Biodiversity Programme, School of Botany and Zoology, University of Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.


Aims (1) To define the physical correlates of indigenous forest in KwaZulu-Natal province and develop a model, based on climatic parameters, to predict the potential distribution of forest subtypes in the province. (2) To explore the impact of palaeoclimatic change on forest distribution, providing an insight into the regional-scale/historical forces shaping the pattern and composition of present-day forest communities. (3) To investigate potential future shifts in forest distribution associated with projected climate change.

Location KwaZulu-Natal province, South Africa.

Methods A BIOCLIM-type approach is adopted. Bioclimatic ‘profiles’ for eight different forest subtypes are defined from a series of grid overlays of current forest distribution against nineteen climatic and geographical variables, using ArcInfo GIS grid-based processing. A principal components analysis is performed on a selection of individual forests to identify those variables most significant in distinguishing different forest subtypes. Five models are developed to predict the distribution of forest subtypes from their bioclimatic profiles. Maps of the potential distribution of forest subtypes predicted by these models under current climatic conditions are produced, and model accuracy assessed. One model is applied to two palaeoclimatic scenarios, the Last Glacial Maximum (LGM) (≈18,000 BP) and the Holocene altithermal (≈7000 BP), and to projected future climate under a doubling in global atmospheric carbon dioxide.

Results Seven variables; altitude, mean annual temperature, annual rainfall range, potential evaporation, annual temperature range, mean annual precipitation and mean winter rainfall, are most important in distinguishing different forest subtypes. Under the most accurate model, the potential present-day distribution of all forest subtypes is more extensive than is actually observed, but is supported by recent historical evidence. During the LGM, Afromontane forest occupied a much reduced and highly fragmented area in the mid-altitude region currently occupied by scarp forest. During the Holocene altithermal, forest expanded in area, with a mixing of Afromontane and Indian Ocean coastal belt forest elements along the present-day scarp forest belt. Under projected climatic conditions, forest shifts in altitude and latitude and occupies an area similar to its current potential and more extensive than its actual current distribution.

Main conclusions Biogeographical history and present physical diversity play a major role in the evolution and persistence of the diversity of forest in KwaZulu-Natal. It is important to adopt a long-term and regional perspective to forest ecology, biogeography, conservation and management. The area and altitudinal and latitudinal distribution of forest subtypes show considerable sensitivity to climate change. The isolation of forest by anthropogenic landscape change has limited its radiation potential and ability to track environmental change. Long-term forest preservation requires reserves in climatically stable areas, or spanning altitudinal or latitudinal gradients allowing for forest migration, along with innovative matrix management strategies. Dune, sand, swamp, riverine and lowland forest subtypes are most at risk. Scarp forests are highlighted as former refugia and important for the future conservation of forest biodiversity.