• Rapoport's rule;
  • Rapoport rescue hypothesis;
  • species richness-energy hypothesis;
  • biodiversity;
  • species richness;
  • latitudinal gradients;
  • North America


Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.