• Alaskan treeline;
  • climate change;
  • Picea glauca;
  • tree establishment;
  • tundra

1 Five treeline species had low seed germination rates and low survivorship and growth of seedlings when transplanted into Alaskan tundra. Seed germination of all species increased with experimental warming, suggesting that the present treeline may in part result from unsuccessful recruitment under cold conditions.

2 Growth, biomass and survivorship of seedlings of treeline species transplanted into tundra were largely unaffected by experimental warming. However, transplanted seedlings of three species (Betula papyrifera, Picea glauca and Populus tremuloides) grew more when below-ground competition with the extant community was reduced. All three measures of transplant performance were greater in shrub tundra than in the less productive tussock or heath tundra. Establishment of trees in tundra may thus be prevented by low resource availability and competition.

3 Two species (Alnus crispa and Populus balsamifera) had low seed germination and survivorship of germinated seeds; transplants of these species did not respond to the manipulations and lost biomass following transplanting into tundra. Isolated populations of these two species north of the present treeline in arctic Alaska probably became established during mid-Holocene warming rather than in recent times.

4 Of all the species studied here, Picea glauca was the most likely to invade intact upland tundra. Its seeds had the highest germination rates and it was the only species whose seedlings survived subsequently. Furthermore, transplanted seedlings of Picea glauca had relatively high survivorship and positive growth in tundra, especially in treatments that increased air temperature or nutrient availability, two factors likely to increase with climate warming.