SEARCH

SEARCH BY CITATION

References

  • 1
    Osler W. Diseases of the Arteries. Philadelphia: Lea and Febiger, 1908.
  • 2
    Carlos TM & Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068 101.
  • 3
    Frenette P & Wagner D. Adhesion molecules. New Engl J Med 1996; 334: 1526 29.
  • 4
    Vora DK, Fang ZT, Liva SM et al. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 1997; 80: 810 18.
  • 5
    Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102: 145 52.
  • 6
    Frenette PS & Wagner DD. Insights into selectin function from knockout mice. Thromb Haemost 1997; 78: 60 64.
  • 7
    Johnson RC, Chapman SM, Dong ZM et al. Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 1997; 99: 1037 43.
  • 8
    Cybulsky MI & Gimbrone Ma Jr Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788 91.
  • 9
    Li H, Cybulsky MI, Gimbrone Ma Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine regulatable mononuclear leukocyte adhesion molecule, in rabbit endothelium. Arterioscler Thromb 1993; 13: 197 204.
  • 10
    Iiyama K, Hajra L, Iiyama M et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999; 85: 199 207.
  • 11
    Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995; 9: 1 14.
  • 12
    Gu L, Okada Y, Clinton S et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low-density lipoprotein-deficient mice. Mol Cell 1998; 2: 275 81.
  • 13
    Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394: 894 97.
  • 14
    Watson AD, Leitinger N, Navab M et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 1997; 272: 13 597 607.
  • 15
    Witztum JL & Berliner JA. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol 1998; 9: 441 48.
  • 16
    Gimbrone Ma Jr, Nagel T, Topper JN. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest 1997; 100: S61 65.
  • 17
    Lefer AM & Ma XL. Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler Thromb 1993; 13: 771 76.
  • 18
    De Caterina R, Libby P, Peng HB et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60 68.
  • 19
    Peng HB, Libby P, Liao JK. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 1995; 270: 14 214 19.
  • 20
    Gimbrone Ma Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN. Hemodynamics, endothelial gene expression, and atherogenesis. Ann NY Acad Sci 1997; 811: 1 10.
  • 21
    Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993; 268: 4569 72.
  • 22
    Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11 811 16.
  • 23
    Da Silva RP, Platt N, De Villiers JS, Gordon S. Membrane molecules and macrophage endocytosis: scavenger receptor and macrosialin as markers of plasma-membrane and vacuolar functions. Biochem Soc Trans 1996; 24: 220 24.
  • 24
    Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci USA 1995; 92: 9580 84.
  • 25
    Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci USA 1996; 93: 14 833 38.
  • 26
    Acton SL, Scherer PE, Lodish HF, Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 1994; 269: 21 003 1009.
  • 27
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271: 518 20.
  • 28
    Gu X, Trigatti B, Xu S, Acton S, Babitt J, Krieger M. The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J Biol Chem 1998; 273: 26 338 48.
  • 29
    Sakaguchi H, Takeya M, Suzuki H et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Invest 1998; 78: 423 34.
  • 30
    Ross R & Glomset JA. The pathogenesis of atherosclerosis I. New Engl J Med 1976; 295: 369 77.
  • 31
    Ross R & Glomset JA. The pathogenesis of atherosclerosis II. New Engl J Med 1976; 295: 420 25.
  • 32
    Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984; 4: 323 40.
  • 33
    Faggiotto A & Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984; 4: 341 56.
  • 34
    Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987; 7: 9 23.
  • 35
    Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross R. Fatty streak expansion and maturation in watanabe heritable hyperlipemic and comparably hyperchlolesterolemic fat-fed rabbits. Arterioclerosis 1987; 7: 24 34.
  • 36
    Barrett TB, Gajdusek CM, Schwartz SM, McDougall JK, Benditt EP. Expression of the sis gene by endothelial cells in culture and in vivo. Proc Natl Acad Sci USA 1984; 81: 6772 74.
  • 37
    Barrett TB & Benditt EP. sis (platelet-derived growth factor B chain) gene transcript levels are evelated in human atherosclerotic lesions compared to normal artery. Proc Natl Acad Sci USA 1987; 84: 1099 103.
  • 38
    Collins T, Ginsburg D, Boss JM, Orkin SH, Pober JS. Cultured human endothelial cells express platelet-derived growth factor chain 2: cDNA cloning and structural analysis. Nature 1985; 316: 748 50.
  • 39
    Walker LN, Bowen-Pope DF, Ross R, Reidy MA. Intimal vascular smooth muscle cells secrete PDGF-like activity. Fed Proc 1985; 44: 737.
  • 40
    Walker LN, Bowen-Pope DF, Ross R, Reidy MA. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci USA 1986; 83: 7311 15.
  • 41
    Sjölund M, Hedin U, Sejersen T, Heldin C-H, Thyberg J. Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype- and growth state-dependent manner. J Cell Biol 1988; 106: 403 13.
  • 42
    Libby P, Warner SJC, Salomon RN, Birinyi LK. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheromata. New Engl J Med 1988; 318: 1493 98.
  • 43
    Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 1985; 43: 277 86.
  • 44
    Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251: 936 39.
  • 45
    Brogi E, Winkles J, Underwood R, Clinton S, Alberts G, Libby P. Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and non-atherosclerotic arteries: association of acidic FGF with plaque microvessels and macrophages. J Clin Invest 1993; 92: 2408 18.
  • 46
    Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393 96.
  • 47
    Gay CG & Winkles JA. Interleukin 1 regulates heparin-binding growth factor 2 gene expression in vascular smooth muscle cells. Proc Natl Acad Sci USA 1991; 88: 296 300.
  • 48
    Virchow R. Cellular Pathology. London: John Churchill, 1858.
  • 49
    Demer LL. A skeleton in the atherosclerosis closet. Circulation 1995; 92: 2029 32.
  • 50
    Fitzpatrick LA, Severson A, Edwards WD, Ingram RT. Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 1994; 94: 1597 604.
  • 51
    Demer LL & Tintut Y, Osteopontin. Between a rock and a hard plaque. Circ Res 1999; 84: 250 52.
  • 52
    Giachelli CM, Liaw L, Murry CE, Schwartz SM, Almeida M. Osteopontin expression in cardiovascular diseases. Ann NY Acad Sci 1995; 760: 109 26.
  • 53
    Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 1800; 91: 1800 809.
  • 54
    Rajavashisth T, Qiao JH, Tripathi S et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 1998; 101: 2702 10.
  • 55
    Qiao JH, Tripathi J, Mishra NK et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997; 150: 1687 99.
  • 56
    Libby P. The molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844 50.
  • 57
    Smith S Jr Risk-reduction therapy: the challenge to change. Circulation 1996; 93: 2205 11.
  • 58
    Falk E, Shah P, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657 71.
  • 59
    Davies MJ. Stability and instability: the two faces of coronary atherosclerosis. The Paul Dudly White Lecture, 1995. Circulation 1996; 94: 2013 20.
  • 60
    Lee R & Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997; 17: 1859 67.
  • 61
    Van Der Wal AC, Becker AE, Van Der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36 44.
  • 62
    Farb A, Burke A, Tang A et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354 63.
  • 63
    Amento EP, Ehsani N, Palmer H, Libby P. Cytokines positively and negatively regulate intersitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis 1991; 11: 1223 30.
  • 64
    Warner SJC, Friedman GB, Libby P. Regulation of major histocompatibility gene expression in cultured human vascular smooth muscle cells. Arteriosclerosis 1989; 9: 279 88.
  • 65
    Stemme S, Fager G, Hansson GK. MHC class II antigen expression in human vascular smooth muscle cells is induced by interferon-gamma and modulated by tumor necrosis factor and lymphotoxin. Immunology 1990; 69: 243 49.
  • 66
    Rekhter M, Zhang K, Narayanan A, Phan S, Schork M, Gordon D. Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol 1993; 143: 1634 48.
  • 67
    Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res 1995; 77: 863 68.
  • 68
    Henney AM, Wakeley PR, Davies MJ et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 1991; 88: 8154 58.
  • 69
    Galis Z, Sukhova G, Lark M, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493 503.
  • 70
    Nikkari ST, O’Brien KD, Ferguson M et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 1995; 92: 1393 98.
  • 71
    Galis Z, Muszynski M, Sukhova G et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 1994; 75: 181 89.
  • 72
    Schoenbeck U, Mach F, Sukhova GK et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81: 448 54.
  • 73
    Mach F, Schoenbeck U, Bonnefoy J-Y, Pober J, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40. Induction of collagenase, stromelysin, and tissue factor. Circulation 1997; 96: 396 99.
  • 74
    Mach F, Schonbeck U, Fabunmi RP et al. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol 1999; 154: 229 38.
  • 75
    Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998; 102: 576 83.
  • 76
    Fabunmi RP, Sukhova GK, Sugiyama S, Libby P. Expression of tissue inhibitor of metalloproteinases-3 in human atheroma and regulation in lesion-associated cells: a potential protective mechanism in plaque stability. Circ Res 1998; 83: 270 78.
  • 77
    Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991; 87: 87 90.
  • 78
    Geng Y-J & Libby P. Evidence for apoptosis in advanced human atheroma. Co-localization with interleukin-1 β-converting enzyme. Am J Pathol 1995; 147: 251 66.
  • 79
    Han D, Haudenschild C, Hong M, Tinkle B, Leon M, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995; 147: 267 77.
  • 80
    Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703 11.
  • 81
    Geng Y-J, Wu Q, Muszynski M, Hansson G, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1-beta. Arterioscler Thromb Vasc Biol 1996; 16: 19 27.
  • 82
    Geng Y-J, Henderson L, Levesque E, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17: 2200 208.
  • 83
    Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 1999; 99: 96 104.
  • 84
    Newby AC, Libby P, Van Der Wal A . Plaque instability – the real challenge for atherosclerosis research in the next decade? Cardiovasc Res 1999; 41: 321 22.
  • 85
    Ross R. Atherosclerosis – an inflammatory disease. New Engl J Med 1999; 340: 115 26.