SEARCH

SEARCH BY CITATION

References

  • 1
    Mesters R, Helterbrand J, Utterback BG et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med 2000; 28: 220916.
  • 2
    Maher JF, Nathans D. Multivalent DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci 1996; 93: 67166720.
  • 3
    Goodwin GH, Sanders C, Johns EW. A new group chromatin associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 1973; 38: 1419.
  • 4
    Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 1996; 54: 35100.
  • 5
    Boonyaratanakornkit V, Melvin V, Prendergast P et al. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 1998; 18: 447187.
  • 6
    Wang H, Bloom O, Zhang M et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285: 248251.
  • 7
    Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol 2000; 165: 29504.
  • 8
    Andersson U, Wang H, Palmblad K et al. High mobilty group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192: 565570.
  • 9
    Wang H, Vishnubhakat JM, Bloom O et al. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999; 126: 38992.
  • 10
    Muller S, Scaffidi P, Degryse B et al. New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. Embo J 2001; 20: 433740.
  • 11
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191195.
  • 12
    Hori O, Brett J, Slattery T et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270: 2575261.
  • 13
    Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. Biol Chem 1999; 274: 1991919924.
  • 14
    Rauvala H, Merenmies J, Pihlaskari R, Korkolainen M, Huhtala ML, Panula P. The adhesive and neurite-promoting molecule p30: analysis of the amino-terminal sequence and production of antipeptide antibodies that detect p30 at the surface of neuroblastoma cells and of brain neurons. J Cell Biol 1988; 107: 2293305.
  • 15
    Bianchi M, Ulrich P, Bloom O et al. An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality. Mol Med 1995; 1: 25466.
  • 16
    Cohen PS, Schmidtmayerova H, Dennis J et al. The critical role of p38 MAP kinase in T cell HIV-1 replication. Mol Med 1997; 3: 33946.
  • 17
    Palmblad J, Lerner R, Larsson SH. Signal transduction mechanisms for leukotriene B4 induced hyperadhesiveness of endothelial cells for neutrophils. J Immunol 1994; 152: 2629.
  • 18
    Ringertz B, Palmblad J, Lindgren JA. Stimulus-specific neutrophil aggregation: evaluation of possible mechanisms for the stimulus-response apparatus. J Lab Clin Med 1985; 106: 132140.
  • 19
    Lerner R, Heimburger M, Palmblad J. Lipoxin A4 induces hyperadhesiveness in human endothelial cells for neutrophils. Blood 1993; 82: 94853.
  • 20
    Jonsson AS, Palmblad JE. Effects of ethanol on NF-kappaB activation, production of myeloid growth factors, and adhesive events in human endothelial cells. J Infect Dis 2001; 184: 7619.
  • 21
    Heimburger M, Palmblad JE. Effects of leukotriene C4 and D4, histamine and bradykinin on cytosolic calcium concentrations and adhesiveness of endothelial cells and neutrophils. Clin Exp Immunol 1996; 103: 454460.
  • 22
    Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest 1995; 95: 2297303.
  • 23
    Schreiber E, Matthias P, Muller MM, Schaffner W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 1989; 17: 6419.
  • 24
    Degryse B, Bonaldi T, Scaffidi P et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 2001; 152: 1197206.
  • 25
    Falciola L, Spada F, Calogero S et al. High mobility group 1 protein is not stably associated with the chromosomes of somatic cells. J Cell Biol 1997; 137: 1926.
  • 26
    Neeper M, Schmidt AM, Brett J et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 149985004.
  • 27
    Schmidt AM, Mora R, Cao R et al. The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem 1994; 269: 98828.
  • 28
    Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 2002; 123: 790802.
  • 29
    Fiuza C, Bustin M, Talwar S et al. Inflammatory promoting activity of HMGB1 on human microvascular endothelial cells. Blood 2003; 107: 265260.