SEARCH

SEARCH BY CITATION

References

  • 1
    Mallow EB, Harris A, Salzman N, Russell JP, Deberardinis RJ, Ruchelli E, et al. Human enteric defensins – gene structure and developmental expression. J Biol Chem 1996; 271: 403845.
  • 2
    Yoshio H, Tollin M, Gudmundsson G, Lagercrantz H, Jörnvall H, Marchini G, et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res 2003; 53: 2116.
  • 3
    Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observational study. The Lancet 2002; 360: 11449.
  • 4
    Simmaco M, Mangoni ML, Boman A, Barra D, Boman HG. et al. Experimental infections in Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the natural flora. Scand J Immunol 1998; 48: 35763.
  • 5
    Boman HG, Nilsson I, Rasmuson B. Inducible antibacterial defence system in Drosophila. Nature 1972; 237: 2325.
  • 6
    Hultmark D, Steiner H, Rasmuson T, Boman HG. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 1980; 106: 716.
  • 7
    Steiner H, Hultmark D, Engström Å , Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981; 292: 2468.
  • 8
    Selsted ME, Brown DM, DeLange RJ, Hartwig S, Lehrer RI. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 1983; 258: 144859.
  • 9
    Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structure of three human neutrophil defensins. J Clin Invest 1985; 76: 14369.
  • 10
    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987; 84: 544953.
  • 11
    Boman HG. Antibacterial peptides: key components needed in immunity. Cell 1991; 65: 2057.
  • 12
    BomanHG, MarchJ, GoodeJ (eds). Antimicrobial Peptides. Ciba Symposium No. 186. Chichester, UK: John Wiley & Sons Ltd, 1991.
  • 13
  • 14
    Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immun 2003; 15: 129.
  • 15
    Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 1998; 47: 43550.
  • 16
    Ouellette AJ, Selsted ME. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J 1996; 10: 12809.
  • 17
    Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002; 14: 96102.
  • 18
    Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 1999; 45: 78594.
  • 19
    Ouellette AJ, Bevins C. Paneth cell defensins and innate immunity of the small bowel. Inflam Bowel Dis 2001; 7: 4350.
  • 20
    Porter E, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci 2002; 59: 15670.
  • 21
    Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immun 1995; 13: 6192.
  • 22
    Andreu D, Rivas L. Animal antimicrobial peptides, an overview. Biopolymers 1998; 47: 41533.
  • 23
    Gallo RL, Huttner KM. Antimicrobial peptides: an emerging concept in cutanous biology. J Invest Dermatol 1998; 111: 73943.
  • 24
    Jack RW, Bierbaum G, Sahl HG. Lantibiotics and Related Peptides. Berlin, Heidelberg: Springer-Verlag, 1998.
  • 25
    Tang Y, Yuan J, Osapay G, Osapay K, Tran D, Miller C. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999; 286: 498502.
  • 26
    Andreu D, Merrifield RB, Steiner H, Boman HG. Solid-phase synthesis of cecropin A and related peptides. Proc Natl Acad Sci USA 1983; 80: 64759.
  • 27
    Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, et al. All D-amino acid containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA, 1990; 87: 47615.
  • 28
    Porter E, Weisblum B, Sh G. Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J Am Chem Soc 2002; 124: 732430.
  • 29
    Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin-P1 and PR-39, 2 antibacterial peptides from pig intestine. Infect Immun 1993; 61: 297884.
  • 30
    Steiner H, Andreu D, Merrifield RB. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta 1988; 939: 2606.
  • 31
    Rivas L, Andreu D. Cecropin-melittin hybrids. A versatile template in the development of membrane-active agents. In: MestrinaA, ed. Pore Forming Peptides and Protein Toxins, 2002; 20959.
  • 32
    Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002; 66: 23648.
  • 33
    Hong R, Shchepetov M, Weiser J, Axelsen P. Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 2003; 47: 16.
  • 34
    Wade D, Boman IA, Wahlin B, Wade D, Merrifield RB, Boman HG. Shortened cecropin-A-melittin hybrids – significant size reduction retains potent antibiotic activity. FEBS Lett 1992; 296: 1904.
  • 35
    Merrifield RB, Juvvadi P, Andreu D, Ubach J, Boman A, Boman HG. Retro and retroenantio analogs of cecropin melittin hybrids. Proc Natl Acad Sci USA 1995; 92: 344953.
  • 36
    Merrifield EL, Mitchell SA, Ubach J, Boman HG, Andreu D, Merrifield RB. D-Enantiomers of 15 residue cecropin A-mellitin hybrids. Int J Pept Protein Res 1995; 46: 21420.
  • 37
    Radzeka A, Wolfenden R. Comparing the polarities of amino acids: side-chain distribution coefficients between vapor phase, cyclohexane, 1-octanol and neutral aqueous solution. Biochemistry 1988; 27: 166470.
  • 38
    Schibli D, Hunter H, Aseyev V, Starner T, Wiencek J, McCray B, et al. The solution structure of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Spaphylococcus aureus. J Biol Chem 2002; 277: 827989.
  • 39
    Nizet V, Olstake T, Lauth X, Trowbridge J, Rudisil J, Dorschner R, et al. Innate antimicrobial peptides protects the skin from invasive bacterial infections. Nature 2001; 414: 4547.
  • 40
    von Hofsten P, Faye I, Kockum K, Lee JY, Xanthopoulos KG, Boman IA, et al. Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc Natl Acad Sci USA 1985; 82: 22403.
  • 41
    Daher KA, Lehrer RI, Ganz T, Kronenberg M. Isolation and characterization of human defensin cDNA clones. Proc Natl Acad Sci USA 1988; 85: 732731.
  • 42
    Boman HG, Boman IA, Andreu D, Li Z-q, Merrifield RB, Schlenstedt G, et al. Chemical synthesis and enzymic processing of precursor forms of cecropin A and B. J Biol Chem 1989; 264: 585260.
  • 43
    Kreil G. Processing of precursors by dipeptidylaminopeptidases: a case of molecular ticketing. TIBS 1990; 15: 236.
  • 44
    Xanthopoulos KG, Lee JY, Gan R, Kockum K, Faye I, Boman HG. The structure of the gene for cecropin B, an antibacterial immune protein from Hyalophora cecropia. Eur J Biochem 1988; 172: 3716.
  • 45
    Gudmundsson GH, Lidholm D-A, Åsling B, Gan R, Boman HG. The cecropin locus; cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia. J Biol Chem 1991; 266: 115107.
  • 46
    Woese CR. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 2000; 97: 83926.
  • 47
    Pütsep K, Bränden K, Boman H, Normark S. Antibacterial peptide from H. pylori. Nature 1999; 398: 6712.
  • 48
    Pütsep K, Normark S, Boman HG. The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Lett 1999; 451: 24952.
  • 49
    Diamond J. Guns, Germs and Steel. The Fate of Human Societies. New York: Norton & Co., 1997.
  • 50
    Yount NY, Yuan J, Tarver A, Castro T, Diamond G, Tran PA, et al. Cloning and expression of bovine neutrophil beta-defensins. Biosynthetic profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules. J Biol Chem 1999; 274: 2624958.
  • 51
    Diamond G, Zasloff M, Eck H, Bressaur M, Maloy WL, Bevins CL. Tracheal antimicrobial peptide, a novel cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 1991; 88: 39526.
  • 52
    Bevins CL. Scratching the surface – inroads to a better understanding of airway host defense. Am J Respir Cell Mol Biol 1999; 20: 8613.
  • 53
    Hill CP, Yee J, Selsted ME, Eisenberg D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science, 1991; 251: 14815.
  • 54
    Ouellette AJ, Miller SI, Henschen AH, Selsted ME. Purification and primary structure of murine cryptdin-1, a Paneth cell defensin. FEBS Lett 1992; 304: 1468.
  • 55
    Lee J.-Y, Boman A, Sun C, Andersson M, Jörnvall H, Mutt V, et al. Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc Natl Acad Sci USA 1989; 86: 915962.
  • 56
    Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart. Vet Immunol Immunopathol 1996; 54: 12731.
  • 57
    Andersson M, Boman A, Boman HG. Ascaris nematodes from pig and human make three antibacterial peptides. Isolation of Cecropin P1 and two ASABF peptides. Cell Mol Life Sci 2003; 60: 599606.
  • 58
    Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T, et al. Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 1999; 67: 31217.
  • 59
    Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Sillard R, et al. NK-lysin, a novel effector peptide of cytotoxic t and NK cells, structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J 1995; 14: 161525.
  • 60
    Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282: 1215.
  • 61
    Gamen S, Hanson DA, Kaspar A, Naval J, Krensky AM, Anel A. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol 1998; 161: 175864.
  • 62
    Liepinsh E, Andersson M, Ruysschaert, Otting G. Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol 1997; 4: 7935.
  • 63
    Andreu D, Carreno C, Linde C, Boman HG, Andersson M. Identification of an antimycobacterial domain in NK-lysin and granulysin. Biochem J 1999; 344: 8459.
  • 64
    Levy O, Ooi CE, Weiss J, Lehrer RI, Elsbach P. Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J Clin Invest 1994; 94: 67282.
  • 65
    Ong PY, Ohtake T, Brandt C, Strickland I, Bugoniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. NEJM 2002; 347: 115160.
  • 66
    Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 2002; 3: 58390.
  • 67
    Porter EM, Poles MA, Lee JS, Naitoh J, Bevins CL, Ganz T. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett 1998; 434: 2726.
  • 68
    Salzman N, Ghosh D, Huttner K, Paterson Y, Bevins CL. et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003; 422: 5226.
  • 69
    Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276: 570713.
  • 70
    Fehlbaum P, Rao M, Zasloff M, Anderson GM. An essential amino acid induces epithelial β-defensin expression. Proc Natl Acad Sci USA 2000; 97: 127238.
  • 71
    Krisanaprakornkit S, Kimball J, Dale B. Regulation of human beta-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-kB transcription factor family. J Immunol 2002; 168: 31624.
  • 72
    Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995; 374: 15.
  • 73
    Lehrer R, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 2002; 9: 1822.
  • 74
    Zanetti M, Gennaro R, Skerlavaj B, Tomasinsig L. et al. Cathelicidin peptides as candidates for a novel class of antimicrobials. Curr Pharm Des 2002; 8: 77993.
  • 75
    Gudmundsson GH, Magnusson KP, Chowdhary BP, Johansson M, Andersson L, Boman HG. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc Natl Acad Sci USA 1995; 92: 70859.
  • 76
    Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 1996; 238: 32532.
  • 77
    Zhao C, Ganz T, Lehrer RI. Structures of genes for two cathelin-associated antimicrobial peptides: prophenin-2 and PR-39. FEBS Lett 1995; 376: 1304.
  • 78
    Gilbert W, De Souza SJ, Long M. The origin of genes. Proc Natl Acad Sci USA 1997; 94: 7698703.
  • 79
    Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, et al. Syndecans, cell surface heparin sulfate proteoglycans, are induced by a prolin-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 1994; 91: 110359.
  • 80
    Shi JS, Zhang G, Minton JE, Ross CR, Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to src homology 3 domains of p47 (phox). Proc Natl Acad Sci USA 1996; 93: 60148.
  • 81
    Wu H, Zhang G, Minton JE, Ross CR, Blecha F. Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and Salmonella enterica serovar typhimurium infection. Infect Immun 2000; 68: 55528.
  • 82
    Li P, Post M, Volk R, Gao Y, et al. PR39, a peptide reguator of angiogenesis. Nat Med 2000; 6: 4655.
  • 83
    Agerberth B, Gunne H, Odelberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 1995; 92: 1959.
  • 84
    Larrick, J., Hirata M, Balint R, Lee J, Zhong J, Wright S, Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995; 63: 12917.
  • 85
    Cowland JB, Johnsen A, Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995; 368: 1736.
  • 86
    Schmidtchen A, Frick I, Andersson E, Tapper H, Bjorck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002; 46: 15768.
  • 87
    Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific flymphocyte and monocyte populations. Blood 2000; 96: 308693.
  • 88
    Hase K, Eckmann L, Leopard J, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002; 70: 95363.
  • 89
    Andersson E, Sorensen O, Frohm B, Borregaard N, Egesten A, Malm J. Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum Reprod 2002; 17: 252934.
  • 90
    Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272: 1525863.
  • 91
    Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998; 42: 220614.
  • 92
    Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 2002; 106: 206.
  • 93
    Yang D, Chen D, Schmidt A, Anderson G, Wang J, Wooters JI, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192: 106974.
  • 94
    Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 2001; 7: 1805.
  • 95
    Scott M, Davidson D, Gold M, Bowdish D, Hancock R. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002; 169: 388391.
  • 96
    Kostmann R. Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in man. Acta Paediatr Scand 1956; 56: 178.
  • 97
    Carlsson G, Fasth A. Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original ‘Kostmann family’ and a review. Acta Paediatr 2001; 90: 75764.
  • 98
    Murakami M, Ohtake T, Dorschner R, Gallo R. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 2002; 81: 84550.
  • 99
    Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, Georgel P, et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 1995; 92: 94659.
  • 100
    Dushay MS, Åsling B, Hultmark D. Origins of immunity: relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 1996; 93: 103437.
  • 101
    Hedengren M, Åsling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, et al. Relish, a central factor in the control of humoral, but not cellular immunity in Drosophila. Mol Cell 1999; 4: 82737.
  • 102
    Bevins C. Antimicrobial peptides as effector molecules of mammalian host defense. In: HerwaldH, ed. Host Response Mechanisms in Infectious Diseases. Karger: Basel, 2003; 10648.
  • 103
    Rosetto M, Engström Y, Baldari CT, Telford JL, Hultmark D. et al. Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem Biophys Res Commun 1995; 209: 1116.
  • 104
    Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 97383.
  • 105
    Hornef M, Frisan T, Vandewalle A, Normark S, Richter-Dahlfors A. Toll-like receptor 4 recides in the Golgi apparatus and colocalizes with internalized lipopolysaccaride in intestinal epithelial cells. J Exp Med 2002; 195: 55970.
  • 106
    Kang D, Liu G, Lundstrom A, Gelius E, Steiner H. et al. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 1998; 195: 1007882.
  • 107
    Jia, H., Schutte B, Schudy A, Linzmeier R, Guthmiller J, Johnson G, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene 2001; 263: 2118.
  • 108
    Schutte B, Mitros J, Bartlett J, Walters J, Welsh M, Casavant T, et al. Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 2002; 99: 212933.
  • 109
    Tomasinsig L, Scocchi M, Di Loreto C, Artico D, Zanetti M. Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytes. J Leukoc Biol 2002; 72: 100310.
  • 110
    Boman HG. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 1998; 48: 1525.
  • 111
    Boman HG. Innate immunity and the normal microflora. Immunol Rev 2000; 173: 516.
  • 112
    Simmaco M, Boman A, Mangoni ML, Mignogna G, Miele R, Barra D, et al. Effect of glucocorticoids on the synthesis of antimicrobial peptides from amphibian skin. FEBS Lett 1997; 416: 2735.
  • 113
    Pütsep K, Axelsson L, Boman A, Midtvedt T, Normark S, Boman H, et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J Biol Chem 2000; 275: 4047882.
  • 114
    Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002; 173: 12949.
  • 115
    Zdobnv EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002; 298: 14959.
  • 116
    Christophides G, Zdobnov EM, Barillsas-Mury C, Birney E, Blandin S, Blass C, et al. Immunity-related genes and gene families in Anophiles gambia. Science 2002; 298: 15965.
  • 117
    Yoshida S, Ioka D, Matsuoka H, Endo H, Ashii A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 2001Mar; 113: 8996.
  • 118
    Pumpuni CB, Demaio J, Kent, Davis JR, Beier J. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 1996; 54: 2148.
  • 119
    Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2002; 2: 7983.
  • 120
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415: 38995.