SEARCH

SEARCH BY CITATION

References

  • 1
    Abramovitz, M. & Stegun, I.A. (1964) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York.
  • 2
    Bagger, P.V., Bang, L., Christiansen, M.D., Gundersen, H.J.G. & Mortensen, L. (1993) Total number of particles in a bounded region estimated directly with the nucleator: granulosa cell number in ovarian follicles. Am. J. Obstet. Gynecol. 168, 724731.
  • 3
    Courant, R. (1934) Differential and Integral Calculus, Vol. I. Blackie, London.
  • 4
    Courant, R. (1936) Differential and Integral Calculus, Vol. II. Blackie, London.
  • 5
    Cruz-Orive, L.M. (1989) On the precision of systematic sampling: a review of Matheron's transitive methods. J. Microsc. 153, 315333.
  • 6
    Cruz-Orive, L.M. (1993) Systematic sampling in stereology. Proceedings of the 49th Session of the International Statistical Institute (Book 2), pp. 451468.
  • 7
    Geinisman, Y., Gundersen, H.J.G., Van Der Zee, E. & West, M.J. (1996) Unbiased stereological estimation of the total number of synapses in a brain region. J. Neurocytol. 25, 805819.
  • 8
    Gual Arnau, X. & Cruz-Orive, L.M. (1998) Variance prediction under systematic sampling with geometric probes. Adv. Appl. Prob. 28, 982992.
  • 9
    Gundersen, H.J.G. (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 345.
  • 10
    Gundersen, H.J.G. (1988) The nucleator. J. Microsc. 151, 321.
  • 11
    Gundersen, H.J.G. & Jensen, E.B. (1987) The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229263.
  • 12
    Jensen, E.B.V. (1998) Local Stereology, World Scientific, Singapore.
  • 13
    Kellerer, A.M. (1989) Exact formulae for the precision of systematic sampling. J. Microsc. 153, 285300.
  • 14
    Kie^u, K. (1997) Three Lectures on Systematic Geometric Sampling. Memoirs No. 13, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus.
  • 15
    Kie^u, K., Souchet, S. & Istas, J. (1999) Precision of systematic sampling and transitive methods. J. Statist. Plan. Inf. in press.
  • 16
    Kie^u, K., Xiong, W. & Trubuil, A. (1998) Precision of systematic counts. Rapport Technique 1998–1, Unité de Biométrie, INRA-Versailles.
  • 17
    Matérn, B. (1989) Precision of area estimation: a numerical study. J. Microsc. 153, 269284.
  • 18
    Matheron, G. (1965) Les Variables Régionalisées et leur Estimation. Masson, Paris.
  • 19
    Matheron, G. (1971) The Theory of Regionalized Variables and its Applications. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, No. 5. Ecole Supérieure des Mines de Paris, Fontainebleau.
  • 20
    Mattfeldt, T. (1989) The accuracy of one-dimensional systematic sampling. J. Microsc. 153, 301313.
  • 21
    Mulders, W.H.A.M., West, M.J. & Slomianka, L. (1997) Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat. J. Comp. Neurol. 385, 8394.
  • 22
    Souchet, S. (1995) Précision de l'estimateur de Cavalieri, Rapport de Stage, D.E.A. de Statistiques et Modèles Aléatoires appliqués à la Finance, Université Paris-VII. Laboratoire de Biométrie, INRA, Versailles.
  • 23
    Sterio, D.C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127136.
  • 24
    West, M.J. & Slomianka, L. (1998) Total number of neurons in the layers of the human entorhinal cortex. Hippocampus, 8, 114.
  • 25
    West, M.J., Østergaard, K., Andreassen, O.A. & Finsen, B. (1996) Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J. Comp. Neurol. 370, 1122.