SEARCH

SEARCH BY CITATION

References

  • 1
    Andrew, J.J. & Hancewicz, T.M. (1998) Rapid analysis of Raman image data using two-way multivariate curve resolution. Appl. Spectrosc. 52, 797 807.
  • 2
    Bewersdorf, J., Pick, R., Hell, S. (1998) Multifocal multiphoton microscopy. Opt. Lett. 23, 655 657.
  • 3
    Brock, A., Rodriguez, N., Zare, R.N. (1998) Hadamard transform time of flight mass spectrometry. Anal. Chem. 70, 3735 3741.
  • 4
    Bruchez, M. Jr , Maronne, M., Gin, P., Weiss, S., Alivasitos, A.P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013 2016.
  • 5
    Chen, G., Mei, E., Gu, W., Zeng, X., Zeng, Y. (1995) Instrument for Hadamard transform three-dimensional fluorescence microscope image analysis. Anal. Chim. Acta, 300, 261 267.DOI: 10.1016/0003-2670(94)00389-4
  • 6
    Cheng, C., Kirkbridge, T.E., Batchelder, D.N., Lacey, R.J., Sheldon, T.G. (1995) In-situ detection and identification of trace explosives by Raman microscopy. J. Forensic Sci. 40, 31 37.
  • 7
    Cogswell, C.J. & Larkin, K.G. (1995) The specimen illumination path and its effect on image quality. Handbook of Biological Confocal Microscopy (ed. by J. B. Pawley), pp. 127 137. Plenum Press, New York.
  • 8
    Cohen, I.J., Issakov, J., Avigad, S., Stark, B., Meller, I., Zaizov, R., Bar-Am., I. (1997) Synovial sarcoma of bone delineated by spectral karyotyping. Lancet, 350, 1679 1680.
  • 9
    Colarusso, P., Kidder, L.H., Levin, I.W., Fraser, J.C., Arens, J.F., Lewis, E.N. (1998) Infrared spectroscopic imaging: from planetary to cellular systems. Appl. Spectrosc. 52, 106A 120A.
  • 10
    Gadella, T.W.J. Jr , Clegg, R.M., Jovin, T.M. (1994) Fluorescence lifetime imaging microscopy: pixel-by-pixel analysis of phase modulation data. Bioimaging, 2, 139 159.
  • 11
    Gadella, T.W.J. Jr , Vereb, G., Hadri, A., Rohrig, H., Schmidt, J., John, M., Schell, J., Bisseling, T. (1997) Microspectroscopic imaging of nodulation factor binding sites on living Vicia sativa roots using a novel bioactive fluorescent nodulation factor. Biophys. J. 72, 1986 1996.
  • 12
    Garini, Y., Macville, M., Du Manoir, S., Buckwald, R.A., Lavi, M., Katzir, N., Wine, D., Bar-Am., I., Schrock, E., Cabib, D., Ried, T. (1996) Spectral karyotyping. Bioimaging, 4, 65 72.
  • 13
    Geladi, P. & Esbensen, K. (1991) Regression on multivariate images: principal component regression for modeling, prediction and visual diagnostic tools. J. Chemometr. 5, 97 111.
  • 14
    Gonen, O., Murdoch, J., Stoyanova, R., Goelman, G. (1998) 3D multivoxel proton spectroscopy of the human brain using a hybrid 8th order Hadamard encoding with 2D chemical shift imaging. Magnet. Reson. Med. 39, 34 40.
  • 15
    Govil, A., Pallister, D.M., Chen, L., Morris, M.D. (1991) Optical sectioning raman microscopy. Appl. Spectrosc. 45, 1604 1606.
  • 16
    Govil, A., Pallister, D.M., Morris, M.D. (1993) Three-dimensional digital confocal Raman microscopy. Appl. Spectrosc. 47, 75 79.
  • 17
    Graff, D.K. (1995) Fourier and Hadamard transforms in spectroscopy. J. Chem. Ed. 74, 304 309.
  • 18
    Haaland, D.M., Jones, H.D.T., Thomas, E.V. (1997) Multivariate classification of the infared spectra of cell and tissue samples. Appl. Spectrosc. 51, 340 345.
  • 19
    Hammaker, R.M., Mortensen, A.N., Orr, E.A., Bellamy, M.K., Paukstelis, J.V., Fateley, W.G. (1995) Multi-dimensional Hadamard transform spectrometry. J. Mol. Struct. 348, 135 138.DOI: 10.1016/0022-2860(95)08607-w
  • 20
    Hanley, Q.S.J., Verveer, P., Jovin, T.M. (1999a) Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy. Appl. Spectrosc. 53, 1 10.
  • 21
    Hanley, Q.S., Verveer, P.J., Gemkow, M.J., Jovin, T.M. (1999b) An optical sectioning programmable array microscope implemented with a digital micromirror device. J. Microsc. 196, 317 331.
  • 22
    Hanley, Q.S., Verveer, P.J., Jovin, T.M. (1998) Optical sectioning spectroscopy in a programmable array microscope. Appl. Spectrosc. 52, 783 789.
  • 23
    Harwit, M. & Sloane, N.J.A. (1979) Hadamard Transform Optics. Academic Press, New York.
  • 24
    Juškaitis, R. & Wilson, T. (1999) A method for characterizing longitudinal chromatic aberration of microscope objectives using a confocal optical system. J. Microsc. 195, 17 22.
  • 25
    Juškaitis, R., Wilson, T., Neil, M.A.A., Kosubek, M. (1996) Efficient real-time confocal microscopy with white light sources. Nature, 383, 804 806.
  • 26
    Keen, I., White, G., Fredericks, P. (1998) Characterization of fibers by Raman microprobe spectroscopy. J. Forensic Sci. 43, 82 89.
  • 27
    Keller, H.E. (1995) Objective lenses for confocal microscopy. Handbook of Biological Confocal Microscopy, 2nd edn (ed. by J. B. Pawley), pp. 11 125, Plenum Press, New York.
  • 28
    Malik, Z., Buckwald, R.A., Talmi, A., Garini, Y., Lipson, S.G. (1996a) Fourier transform multipixel spectroscopy for quantitative cytology. J. Microsc. 182, 133 140.
  • 29
    Malik, Z., Dishi, M., Garini, Y. (1996b) Fourier transform multipixel spectroscopy of protoporphyrin in single melanoma cells. Photochem. Photobiol. 63, 608 614.
  • 30
    Mei, E., Gu, W., Chen, G., Zeng, Y. (1996) The analysis of DNA and protein in a single cell by Hadamard transform microscope image. Fresenius J. Anal. Chem. 354, 250 253.
  • 31
    Morris, H.R., Hoyt, C.C., Treado, P.J. (1994) Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48, 857 865.
  • 32
    Neil, M.A.A., Juškaitis, R., Wilson, T. (1998) Real time 3D fluorescence microscopy by two beam interference illumination. Opt. Commun. 153, 1 4.DOI: 10.1016/s0030-4018(98)00210-7
  • 33
    Puppels, G.J., De Mul, F.F.M., Otto, C., Greve, J., Robert-Nicoud, M., Arndt-Jovin, D.J., Jovin, T.M. (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature, 347, 301 303.
  • 34
    Schaeberle, M.D., Morris, H.R., Turner, J.F., Treado, P.J. (1999) Raman chemical imaging microscopy. Anal. Chem. 71, 175A 181A.
  • 35
    Schrock, E., Du Manoir, S., Veldman, T., Schoel, B., Wienberg, J., Ferguson-Smith, M.A., Ning, Y., Ledbetter, D.H., Bar-Am., I., Soenksen, D., Garini, Y., Ried, T. (1995) Multicolor spectral karyotyping of human chromosomes. Science, 273, 494 497.
  • 36
    Slingerland, J. (1976) Hadamard transform infrared astronomical imaging device. Rev. Sci. Instrum. 47, 1331 1336.
  • 37
    Timlin, J.A., Carden, A., Morris, M.D., Bonadio, J.A., Hoffler, C.E., Kozloff, K.M., Goldstein, S.A. (1999) Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging. J. Biomed. Optics, 4, 28 34.
  • 38
    Treado, P.J. & Morris, M.D. (1989) The Hadamard transform in chemical analysis and instrumentation. Anal. Chem. 61, 732A 734A.
  • 39
    Treado, P.J. & Morris, M.D. (1990) Multichannel Hadamard transform Raman microscopy. Appl. Spectrosc. 44, 1 4.
  • 40
    Turner, J.F. & Treado, P.J. (1996) Near infrared acousto-optic tunable filter Hadamard transform spectroscopy. Appl. Spectrosc. 50, 277 284.
  • 41
    Van Der Voort, H.T.M. & Brakenhoff, G.J. (1990) 3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis. J. Microsc. 158, 43 54.
  • 42
    Verveer, P.J. (1998) Computational and Optical Methods for Improving Resolution and Signal Quality in Fluorescence Microscopy. PhD Thesis. Delft University of Technology.
  • 43
    Verveer, P.J. & Jovin, T.M. (1998) Image restoration based on Good's roughness penalty with application to fluorescence microscopy. J. Opt. Sci. Am. A, 15, 1077 1083.
  • 44
    Warren, C.W. & Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016 2018.
  • 45
    Youvan, D.C. (1994) Imaging sequence space. Nature, 369, 79.