• Anstis, G.R., Chantikul, P., Lawn, B.R. & Marshall, D.B. (1981) A critical evaluation of indentation techniques for measuring fracture toughness I: Direct Crack Measurements. J. Am. Ceram. Soc. 64, 533538.
  • Becher, P.F., Sun, E.Y., Plucknett, K.P., Alexander, K.B., Hsueh, C.-H., Lin, H.-T., Waters, S.B., Westmoreland, C.G., Kang, E.-S., Hirao, K. & Brito, M.E. (1998) Microstructural design of silicon nitride with improved fracture toughness: I, Effects of grain size and shape. J. Am. Ceram. Soc. 81, 28212830.
  • Bonnell, D.A., Tien, T.-Y. & Rühle, M. (1987) Controlled crystallization of the amorphous phase in silicon nitride ceramics. J. Am. Ceram. Soc. 70, 460465.
  • Dusza, J. & Sˇajgalik, P. (1995) Fracture toughness and strength testing of ceramic composites. Handbook of Advanced Materials Testing Vol. 9 (ed. by N. P.Cheremisinoff and P. N.Cheremisinoff), pp. 399–435. Marcel Dekker, New York.
  • Evans, A.G. & Sharp, J.V. (1971) Microstructural studies on silicon nitride. J. Mater. Sci. 6, 12921302.
  • Gauckler, L.J., Hohnke, H. & Tien, T.Y. (1980) The system Si3N4-SiO2-Y2O3. J. Am. Ceram. Soc. 63, 3537.
  • Hoffmann, M.J. & Petzow, G. (1993) Microstructure design of Si3N4 based ceramics. Silicon Nitride Ceramics. Scientific and Technological Advances (ed. by I.-W.Chen, P. F.Becher, M.Mitomo, G.Petzow and T.-S.Yen), pp. 315. Mater. Res. Soc. Symp. Proc. 287.
  • Kawahara, K., Tsurekawa, S. & Nakashima, H. (2000) Dislocation structure and activated slip systems in beta-silicon nitride during high temperature deformation. Key Eng. Mater. 171, 825832.
  • Kleebe, H.-J., Braue, W., Schmidt, H., Pezzotti, G. & Ziegler, G. (1996) Transmission electron microscopy of microstructures in ceramic materials. J. Eur. Ceram. Soc. 16, 339351.
  • Knutson-Wedel, E.M., Falk, L.K.L., Bjo¨rklund, H. & Ekstro¨m, T. (1991) Si3N4 ceramics formed by HIP using different oxide additions – relation between microstructure and properties. J. Mater. Sci. 26, 55755584.
  • Krause, R.F. (1988) Rising fracture toughness from the bending strength of indented alumina beams. J. Am. Ceram. Soc. 71, 338343.
  • Lange, F.F. (1979) Fracture toughness of Si3N4 as a function of the initial α-phase content. J. Am. Ceram. Soc. 62, 428430.
  • Lawn, B. (1993) Fracture of Brittle Solids. 2nd edn. Cambridge University Press, Cambridge.
  • Lee, W.-H., Kim, H.-E. & Cho, S.-J. (1997) Microstructural evolution of gas-pressure-sintered Si3N4 with Y2O3 as a sintering aid. J. Am. Ceram. Soc. 80, 27372740.
  • Mitomo, M. & Petzow, G. (1995) Recent progress in silicon carbide ceramics. MRS Bulletin, 20[2], 1920.
  • Mukhopadhyay, A.K., Datta, S.K. & Chakraborty, D. (1999) Fracture toughness of structural ceramics. Ceram. Inter. 25, 447454.
  • Nakayasu, T., Yamada, T., Tanaka, I., Adachi, H. & Goto, S. (1998) Calculation of grain-boundary bonding in rare-earth-doped β-Si3N4. J. Am. Ceram. Soc. 81, 565570.
  • Nishimura, T. & Mitomo, M. (1995) Phase relationships in the system Si3N4-SiO2-Yb2O3. J. Mater. Res. 10, 240242.
  • Oyama, Y. (1972) Solid Solution in the Ternary System, Si3N4-AlN-Al2O3. Japan J. Appl. Phys. 11, 760761.
  • Sanders, W.A. & Mieskowski, D.M. (1985) Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions. Am. Ceram. Soc. Bull. 64, 304309.
  • Sun, E.Y., Becher, P.F., Plucknett, K.P., Hsueh, C.-H., Alexander, K.B., Waters, S.B., Hirao, K. & Brito, M.E. (1998) Microstructural design of silicon nitride with improved fracture toughness: II, Effects of yttria and alumina additives. J. Am. Ceram. Soc. 81, 28312840.
  • Weaver, G.Q., Baumgartner, H.R. & Torti, M.L. (1975) Thermal shock behaviour of sintered silicon carbide and reaction-bonded silicon nitride. Special Ceramics 6 (ed. by P.Popper), pp. 261281. British Ceramic Research Association, Stoke on Trent.
  • Zheng, Y.S., Vieira, J.M., Oliveira, F.J., Davim, J.P. & Brogueira, P. (2000) Relationship between flexural strength and surface roughness for hot-pressed Si3N4 self-reinforced ceramics. J. Eur. Ceram. Soc. 20, 13451353.