SEARCH

SEARCH BY CITATION

Keywords:

  • automatic analysis;
  • brain topography;
  • sleep spindle

The application of an automatic sleep spindle detection procedure allowed the documentation of the topographic distribution of spindle characteristics, such as number, amplitude, frequency and duration, as a function of sleep depth and of recording time. Multichannel all-night EEG recordings were performed in 10 normal healthy subjects aged 20–35 years. Although the interindividual variability in the number of sleep spindles was very high (2.7±2.1 spindles per minute stage 2 sleep), all but two subjects showed maximal spindle activity in centro-parietal midline leads. Moreover, this topography was seen in all sleep stages and changed only slightly – to a more central distribution – towards the end of the night. On the other hand, slow (11.5–14 Hz) and fast (14–16 Hz) spindles showed a completely different topography, with slow spindles distributed anteriorly and fast spindles centro-parietally. The number of sleep spindles per min was significant depending on sleep stages, with the expected highest occurrence in stage 2, and on recording time, with a decrease in spindle density from the beginning towards the end of the night. However, spindle amplitude, frequency and individual duration was not influenced by sleep depth or time of the night.