• alignment;
  • amino acid sequences;
  • computer analysis;
  • conservative regions;
  • envelope proteins;
  • HCV

Sequences of the E1 and E2 envelope proteins of hepatitis C virus (HCV) (827 non-identical items) were collected from available sources and aligned. Analysis of the alignment identified regions with different sequence variability. It was found that 33% and 50% of positions within E1 and E2, respectively, were highly conservative. Such conservation can be considered as the minimum for maintaining stability of the three-dimensional structure and function of these proteins. Conserved cysteines in E1 and E2 (eight and 18 residues, respectively) were presumed to form intramolecular disulphide bonds. Both envelope proteins were predicted to contain 14 conservative glycosylation sites. Two additional glycosylation sites were predicted in 58% of E1 and 30% of E2 sequences within the corresponding regions. We describe the positions of six conservative regions in E1 and E2, which have several charged and aromatic residues known to participate frequently in protein–protein recognition. Peculiarities in the amino acid content of conservative fragments and putative differences in glycosylation were considered with regard to antigenic specificity and possible binding to surface structures of target cells. We also analysed the hypervariable region 1 (HVR1), located in the E2 protein. Aligned positions of HVR1 were described in relation to the maintenance of conformational stability and recognition of cell receptors.