Clinical evaluation of a new enzyme immunoassay for hepatitis B virus core-related antigen; a marker distinct from viral DNA for monitoring lamivudine treatment

Authors


Eiji Tanaka MD, Second Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan. E-mail: etanaka@hsp.md.shinshu-u.ac.jp

Abstract

Summary. We aimed to assess the clinical performance of a newly developed chemiluminescence enzyme immunoassay (CLEIA) for the detection of hepatitis B virus (HBV) core-related antigen (HBcrAg) in patients with chronic HBV infection. A total of 82 patients with chronic HBV infection and 167 HBV-negative controls were studied. HBcrAg was measured by CLEIA with monoclonal antibodies to hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg), and HBV DNA was measured by transcription-mediated amplification assay (TMA) and in-house real-time detection polymerase chain reaction (RTD-PCR). The HBcrAg assay detected viremia in 189 of 216 samples (88%) collected from 72 patients whilst the TMA assay detected viremia in 178 of the 216 samples (82%) (P = 0.019). The HBcrAg concentration correlated linearly with the HBV DNA concentration (P < 0.001) over a range which varied 100 000-fold. The accuracy in the measurement of the patients’ HBV load obtained using the HBcrAg assay was not affected by the absence of hepatitis B e antigen from the serum or the presence of precore mutations in the HBV genome. In patients without anti-viral drugs, changes in their serum HBcrAg concentration over time corresponded to their HBV DNA concentration. In six additional patients who were later treated with lamivudine, HBV DNA concentration declined more rapidly than their HBcrAg concentration. Three months after treatment commenced, the ratio of HBcrAg: HBV DNA had increased in all six patients (P = 0.031). The HBcrAg assay is a sensitive and useful test for the assessment of a patient's HBV load. When monitoring the anti-viral effect of lamivudine, HBcrAg provides a viral marker which is independent of HBV DNA.

Ancillary