Get access

Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States


Anne L. McMillen-Jackson. Tel. +1-727-896-8626; Fax: +1-727-823-0166; E-mail:


Analysing the population genetic structures of sympatric species provides opportunities to compare patterns of population genetic structure and phylogeography in order to gain insight into the factors that influence the development of the observed patterns. In this study, we compared the population genetic structures and phylogeographies of brown shrimp (Farfantepenaeus aztecus) and white shrimp (Litopenaeus setiferus), two sympatric penaeid shrimp species that inhabit the waters of the eastern USA, using sequence analysis of the mitochondrial DNA control region. Brown shrimp showed no significant phylogenetic structure or population subdivision, and closely related haplotypes were geographically dispersed. Mismatch analysis indicated that brown shrimp experienced a late-Pleistocene era sudden population expansion. In contrast, white shrimp had a complex haplotype phylogeny consisting of two distinct lineages and two less well-defined sublineages, and the haplotypes and lineages were geographically structured. Mismatch analysis for white shrimp also showed evidence of sudden population expansion, albeit for each lineage separately and more recently than in the brown shrimp. These disparate patterns may have developed as a result of species-specific differences in physiological tolerances and habitat preferences that caused greater fluctuations in white shrimp population sizes and reductions in long-term effective population size relative to that of the brown shrimp, and thereby increased the susceptibility of the white shrimp populations to stochastic genetic change.