SEARCH

SEARCH BY CITATION

Keywords:

  • cpDNA;
  • invasive plant;
  • population structure;
  • Silene vulgaris

Abstract

Silene vulgaris was introduced into North America sometime prior to 1800. In order to document the population structure that has developed since that time, collections were made from 56 local populations distributed among 9 geographical regions in eastern North America. Individual plants were characterized for chloroplast DNA (cpDNA) haplotype by restriction fragment size analysis of four noncoding regions of cpDNA amplified by polymerase chain reaction. A total of 19 cpDNA haplotypes were detected using this method. The overall gene diversity of 0.85 is quite similar to the diversity detected in these same regions of cpDNA in a previously published sample of Svulgaris taken from across much of Europe. The spatial distribution of the North American cpDNA diversity was quantified by hierarchical F-statistics that partitioned the genetic variance into variation among local populations within regions, and variation among regions. The average FST among populations within regions was 0.66 and the FST among regions was 0.09. The among-region variation was due to both differences among regions in the frequency of two most common haplotypes, and to the presence of a number of region-specific haplotypes. In order to test for isolation by distance at the regional level, FST values were calculated for all possible pairs of regions, and regressed against the geographical distance between those regions. There was no evidence for isolation by distance. It is suggested that the local population structure is generated by recent extinction/colonization dynamics, and that the among-region structure reflects demographic events associated with range expansion following introduction to North America.