Fine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean


and present address: S. R. Santos, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721, USA. Fax: (520) 621 3709; E-mail:


The success of coral reefs is due to obligate mutualistic symbioses involving invertebrates and photosynthetic dinoflagellate symbionts belonging to the genus Symbiodinium. In the Caribbean, the vast majority of octocorals and other invertebrate hosts associate with Symbiodinium clade B, and more selectively, with a single lineage of this clade, Symbiodinium B1/B184. Although B1/B184 represents the most prevalent Symbiodinium in the Caribbean, there is little evidence supporting fine-scale diversity and host–alga specificity within this lineage. We explored simultaneously the questions of diversity and specificity in Symbiodinium B1/B184 by sequencing the flanking regions of two polymorphic microsatellites from a series of Symbiodinium clade B cultures along with Symbiodinium B1/B184 populations of the octocorals Pseudopterogorgia elisabethae, P. bipinnata and Gorgonia ventalina. Seven unique sequence variants were identified based on concatenation of the two loci. Phylogenetic analyses of these variants, which we refer to as phylotypes, recognized five as belonging to B1/B184, thus providing the first evidence of distinct taxa within this Symbiodinium lineage. Furthermore, sympatric P. elisabethae and P. bipinnata at San Salvador in the Bahamas were found to harbour distinct Symbiodinium B1/B184 phylotypes, demonstrating unequivocally the existence of fine-scale specificity between Caribbean octocorals and these algae. Taken together, this study exemplifies the complex nature of Symbiodinium biodiversity and specificity.