Microsatellites reveal clonal structure of populations of the thelytokous ant Platythyrea punctata (F. Smith) (Hymenoptera; Formicidae)


K. Schilder. Fax: + 49-931888-4309; E-mail:schilder@gmx.de


Parthenogenesis is often thought to constitute an evolutionary dead end as compared with sexual reproduction because genetic recombination is limited or nonexistent in parthenogenetic populations. Yet there are many species to demonstrate that parthenogenesis can initially be extremely successful under certain environmental conditions. In this study we used microsatellite markers to investigate the genetic structure of four natural populations of the neotropical thelytokous parthenogenetic ant Platythyrea punctata. Ten dinucleotide microsatellites were isolated from a partial genomic library of P. punctata. Five of these were found to be polymorphic. In a subsequent analysis of 314 workers taken from 51 colonies, we detected low intraspecific levels of variation at all loci, expressed both in the number of alleles detected and heterozygosities observed. Surprisingly, we found almost no differentiation within populations. Populations rather had a clonal structure, with all individuals from all colonies usually sharing the same genotype. Only in one colony from Puerto Rico did some workers have an additional genotype. This low level of genotypic diversity probably reflects the predominance of thelytoky in P. punctata, together with genetic bottlenecks and founder effects. Cross-species amplification of all 10 loci in 29 ant species comprising four different subfamilies yielded positive amplification products in only a limited number of species.