Get access

Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations


D. Bartsch. Fax: +49 (241) 8888 182;


Gene flow and introgression from cultivated plants may have important consequences for the conservation of wild plant populations. Cultivated beets (sugar beet, red beet and Swiss chard: Beta vulgaris ssp. vulgaris) are of particular concern because they are cross-compatible with the wild taxon, sea beet (B.vs. ssp. maritima). Cultivated beet seed production areas are sometimes adjacent to sea beet populations; the numbers of flowering individuals in the former typically outnumber those in the populations of the latter. In such situations, gene flow from cultivated beets has the potential to alter the genetic composition of the nearby wild populations. In this study we measured isozyme allele frequencies of 11 polymorphic loci in 26 accessions of cultivated beet, in 20 sea beet accessions growing near a cultivated beet seed production region in northeastern Italy, and 19 wild beet accessions growing far from seed production areas. We found one allele that is specific to sugar beet, relative to other cultivated types, and a second that has a much higher frequency in Swiss chard and red beet than in sugar beet. Both alleles are typically rare in sea beet populations that are distant from seed production areas, but both are common in those that are near the Italian cultivated beet seed production region, supporting the contention that gene flow from the crop to the wild species can be substantial when both grow in proximity. Interestingly, the introgressed populations have higher genetic diversity than those that are isolated from the crop. The crop-to-wild gene flow rates are unknown, as are the fitness consequences of such alleles in the wild. Thus, we are unable to assess the long-term impact of such introgression. However, it is clear that gene flow from a crop to a wild taxon does not necessarily result in a decrease in the genetic diversity of the native plant.