Population subdivision in Europe’s great bustard inferred from mitochondrial and nuclear DNA sequence variation

Authors


Christian Pitra. Fax: (+ 49)0305126104; E-mail: Pitra@IZW-Berlin.de

Abstract

A continent-wide survey of sequence variation in mitochondrial (mt) and nuclear (n) DNA of the endangered great bustard (Otis tarda) was conducted to assess the extent of phylogeographic structure in a morphologically monotypic bird. DNA sequence variation in a combined 809 bp segment of the mtDNA genome from 66 individuals from the last six breeding regions showed relatively low levels of intraspecific sequence diversity (π = 0.32%) but significant differences in the regional distribution of 11 haplotypes (ΦST = 0.49). Despite their exceptional potential for dispersal, a complete and long-term historical separation between the populations from the Iberian Peninsula (Spain) and mainland Europe (Hungary, Slovakia, Germany, and Russia) was demonstrated. Divergence between populations based on a 3-bp insertion–deletion polymorphism within the intron region of the nuclear CHD-Z gene was geographically concordant with the primary subdivision identified within the mtDNA sequences. Inferred aspects of phylogeography were used to formulate conservation recommendations for this endangered species.

Ancillary