A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation

Authors

  • Jan Willem Sanders,

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author
  • Kees Leenhouts,

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author
  • Jan Burghoorn,

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author
  • Jan Roel Brands,

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author
  • Gerard Venema,

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author
  • Jan Kok

    1. Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
    Search for more papers by this author

Gerard Venema, E-mail g.venema@biol.rug.nl; Tel. (50) 363 2093; Fax (50) 363 2348.

Abstract

Previously, a promoter was identified in Lactococcus lactis that is specifically induced by chloride. Here, we describe the nucleotide sequence and functional analysis of two genes transcribed from this promoter, gadC and gadB. GadC is homologous to putative glutamate-γ-aminobutyrate antiporters of Escherichia coli and Shigella flexneri and contains 12 putative membrane-spanning domains. GadB shows similarity to glutamate decarboxylases. A L. lactis gadB mutant and a strain that is unable to express both gadB and gadC was more sensitive to low pH than the wild type when NaCl and glutamate were present. Expression of gadCB in L. lactis in the presence of chloride was increased when the culture pH was allowed to decrease to low levels by omitting buffer from the medium, while glutamate also stimulated gadCB expression. Apparently, these genes encode a glutamate-dependent acid resistance mechanism of L. lactis that is optimally active under conditions in which it is needed to maintain viability. Immediately upstream of the chloride-dependent gadCB promoter Pgad, a third gene encodes a protein (GadR) that is homologous to the activator Rgg from Streptococcus gordonii. gadR expression is chloride and glutamate independent. A gadR mutant did not produce the 3 kb gadCB mRNA that is found in wild-type cells in the presence of NaCl, indicating that GadR is an activator of the gadCB operon.

Ancillary