The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120

Authors


Iris Maldener E-mail iris.maldener@biologie.uni-regensburg.de; Tel. (941) 943 3033; Fax (941) 943 3352.

Abstract

The gene devA of the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 encodes a protein with high similarity to ATP-binding cassettes of ABC transporters. Mutant M7 defective in the devA gene is arrested in the development of heterocysts at an early stage and is not able to fix N2 under aerobic conditions. The devA gene is differentially expressed in heterocysts. To gain a better understanding of the structural components of this putative ABC transporter, we determined the complete nucleotide sequence of the entire gene cluster. The two additional genes, named devB and devC, encode proteins with similarities to membrane fusion proteins (DevB) of several ABC exporters and to membrane-spanning proteins (DevC) of ABC transporters in general. Site-directed mutations in each of the three genes resulted in identical phenotypes. Heterocyst-specific glycolipids forming the laminated layer of the envelope were identified in lipid extracts of M7 and in the site-directed mutants. However, transmission electron microscopy revealed unequivocally that the glycolipid layer is missing in mutant M7. Ultrastructural analysis also confirmed a developmental block at an early stage of differentiation. The results of this study suggest that the devBCA operon encodes an exporter of glycolipids or of an enzyme that is necessary for the formation of the laminated layer. The hypothesis is proposed that an intact envelope could be required for further heterocyst differentiation.

Ancillary