• 1
    Amrein, K.E., Takacs, B., Stieger, M., Molnos, J., Flint, N.A., Burn, P. (1995) Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc Natl Acad Sci USA 92: 10481052.
  • 2
    Amster-Choder, O., Houman, F., Wright, A. (1989) Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 58: 847855.
  • 3
    Arnaud, M., Vary, P., Zagorec, M., Klier, A., Débarbouillé, M., Postma, P., et al (1992) Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174: 31613170.
  • 4
    Arnaud, M., Debarbouillé, M., Rapoport, G., Saier, Jr, M.H., Reizer, J. (1996) In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. J Biol Chem 271: 1896618972.
  • 5
    Charrier, V., Deutscher, J., Galinier, A., Martin-Verstraete, I. (1997) Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Biochemistry 36: 11631172.
  • 6
    Chen, Q., Engelberg-Fulka, H., Amster-Choder, O. (1997) The localization of the phosphorylation site of BglG, The response regulator of the Escherichia coli bgl sensory system. J Biol Chem 272: 1726317268.
  • 7
    Crutz, A.M., Steinmetz, M., Aymerich, S., Richter, R., Le Coq, D. (1990) Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 172: 10431050.
  • 8
    Débarbouillé, M., Arnaud, M., Fouet, A., Klier, A., Rapoport, G. (1990) The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172: 39663973.
  • 9
    Débarbouillé, M., Martin-Verstraete, I., Klier, A., Rapoport, G. (1991) The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci USA 88: 22122216.
  • 10
    Deutscher, J., Reizer, J., Fischer, C., Galinier, A., Saier, Jr, M.H., Steinmetz, M. (1994) Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol 176: 33363344.
  • 11
    Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V., Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 6: 10491053.
  • 12
    Deutscher, J., Fischer, C., Charrier, V., Galinier, A., Lindner, C., Darbon, E., et al (1997) Regulation of carbon metabolism in Gram-positive bacteria by protein phosphorylation. Folia Microbiol 42: 171178.
  • 13
    Eiserman, R., Deutscher, J., Gonzy-Treboul, G., Hengstenberg, W. (1988) Site-directed mutagenesis with the ptsH gene of Bacillus subtilis: isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site. J Biol Chem 263: 1705017054.
  • 14
    Fujita, Y., Miwa, Y., Galinier, A., Deutscher, J. (1995) Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17: 953960.
  • 15
    Gösseringer, R., Kuster, E., Galinier, A., Deutscher, J., Hillen, W. (1997) Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 4: 665676.
  • 16
    Hakes, D.J. & Dixon, J.E. (1992) New vectors for high level expression of recombinant proteins in bacteria. Anal Biochem 202: 293298.
  • 17
    Hueck, C.J. & Hillen, W. (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Mol Microbiol 15: 395401.
  • 18
    Kohlbrecher, D., Eisermann, R., Hengstenberg, W. (1992) Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus carnosus ptsI gene and expression and complementation studies of the gene product. J Bacteriol 174: 22082214.
  • 19
    Krüger, S., Gertz, S., Hecker, M. (1996) Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178: 26372644.
  • 20
    Kunkel, T.A., Roberts, J.D., Zakour, R.A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154: 367382.
  • 21
    Kunst, F. & Rapoport, G. (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177: 24032407.
  • 22
    Lai, X. & Ingram, L.O. (1993) Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli. J Bacteriol 175: 64416450.
  • 23
    Le Coq, D., Lindner, C., Krüger, S., Steinmetz, M., Stülke, J. (1995) New β-glucoside (bgl ) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions, similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177: 15271535.
  • 24
    Mahadevan, S. & Wright, A. (1987) A bacterial gene involved in transcription antitermination: regulation at a rho-independent terminator in the bgl operon of E. coli. Cell 50: 485494.
  • 25
    Martin, I., Débarbouillé, M., Ferrari, E., Klier, A., Rapoport, G. (1987) Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208: 177184.
  • 26
    Martin-Verstraete, I., Débarbouillé, M., Klier, A., Rapoport, G. (1990) Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214: 657671.
  • 27
    Martin-Verstraete, I., Débarbouillé, M., Klier, A., Rapoport, G. (1992) Mutagenesis of the Bacillus subtilis‘−12, −24’ promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226: 8599.
  • 28
    Martin-Verstraete, I., Débarbouillé, M., Klier, A., Rapoport, G. (1994) Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. J Mol Biol 241: 178192.
  • 29
    Martin-Verstraete, I., Stülke, J., Klier, A., Rapoport, G. (1995) Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177: 69196927.
  • 30
    Martin-Verstraete, I., Michel, V., Charbit, A. (1996) The levanase operon of Bacillus subtilis expressed in Escherichia coli can substitute for the mannose permease in mannose uptake and bacteriophage lambda infection. J Bacteriol 178: 71127119.
  • 31
    Mattoo, R.L. & Waygood, E.B. (1983) An enzymatic method for [32P]phosphoenolpyruvate synthesis. Anal Biochem 128: 245249.
  • 32
    Mattoo, R.L., Khandelwal, R.L., Waygood, E.B. (1984) Isoelectrophoretic separation and the detection of soluble proteins containing acid-labile phosphate: use of the phosphoenolpyruvate:sugar phosphotransferase system as a model system for N1-P-histidine- and N3-P-histidine-containing proteins. Anal Biochem 139: 116.
  • 33
    Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 34
    Postma, P.W., Lengeler, J.W., Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543594.
  • 35
    Reizer, J. & Saier, Jr, M.H. (1997) Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7: 407415.
  • 36
    Reizer, J., Romano, A.H., Deutscher, J. (1993) The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria. J Cell Biochem 51: 1924.
  • 37
    Roossien, F.F., Brink, J., Robillard, G.T. (1983) A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium. Biochim Biophys Acta 760: 1857.
  • 38
    Rutberg, B. (1997) Antitermination of transcription of catabolic operons. Mol Microbiol 23: 413421.
  • 39
    Saier, Jr, M.H. (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Microbiol Rev 53: 109120.
  • 40
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 41
    Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 54635467.
  • 42
    Schnetz, K. & Rak, B. (1990) β-Glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci USA 87: 50745078.
  • 43
    Schnetz, K., Stülke, J., Gertz, S., Krüger, S., Krieg, M., Hecker, M., et al (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178: 197179.
  • 44
    Seip, S., Lanz, R., Gutknecht, R., Flukiger, K., Erni, B. (1997) The fructose transporter of Bacillus subtilis encoded by the lev operon: backbone assignment and secondary structure of the IIB (Lev) subunit. Eur J Biochem 243: 306314.
  • 45
    Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J., Rapoport, G. (1995) The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177: 69286936.
  • 46
    Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A., Rapoport, G. (1997) Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25: 6578.
  • 47
    Tortosa, P., Aymerich, S., Lindner, C., Saier, M.H., Reizer, J., Le Coq, D. (1997) Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272: 1723017237.