SEARCH

SEARCH BY CITATION

References

  • 1
    Bailey, C.J. (1989) Enzyme kinetics of cellulose degradation. Biochem J 262: 10011002.
  • 2
    Barr, B.K., Hsieh, Y.-L., Ganem, B., Wilson, D.B. (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35: 586592.
  • 3
    Béguin, P. & Lemaire, M. (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 31: 201236.
  • 4
    Beldman, G., Voragen, A.G.J., Rombouts, F.M., Pilnik, W. (1988) Synergism in cellulose hydrolysis by endoglucanases and exoglucanases purified from Trichoderma viride. Biotechnol Bioeng 31: 173178.
  • 5
    Bronnenmeier, K. & Staudenbauer, W.L. (1990) Cellulose hydrolysis by a highly thermostable endo-1,4-β-glucanase (Avicelase I) from Clostridium stercorarium. Enzyme Microb Technol 12: 431436.
  • 6
    Bronnenmeier, K., Rücknagel, K.P., Staudenbauer, W.L. (1991) Purification and properties of a novel type of exo-1,4-β-glucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200: 379385.
  • 7
    Bronnenmeier, K., Kundt, K., Riedel, K., Schwarz, W.H., Staudenbauer, W.L. (1997) Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-β-glucanase Avicelase II. Microbiology 143: 891898.
  • 8
    Bülow, L. & Mosbach, K. (1991) Multienzyme systems obtained by gene fusion. Trends Biotechnol 9: 226231.
  • 9
    Gal, L., Gaudin, C., Belaich, A., Pages, S., Tardif, C., Belaich, J.-P. (1997) CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J Bacteriol 179: 65956601.
  • 10
    Jauris, S., Rücknagel, K.P., Schwarz, W.H., Kratzsch, P., Bronnenmeier, K., Staudenbauer, W.L. (1990) Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermostable cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol Gen Genet 223: 258267.
  • 11
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680685.
  • 12
    Moraes, L.M.P., Astolfi-filho, S., Oliver, S.G. (1995) Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional enzymes. Appl Microbiol Biotechnol 43: 10671076.
  • 13
    Nidetzky, B., Steiner, W., Hayn, M., Claeyssens, M. (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298: 705710.
  • 14
    Olson, O., Thomson, K.K., Weber, J., Duus, J.O., Svendsen, I., Wegener, C., et al (1996) Transplanting two unique β-glucanase catalytic activities into one multienzyme, which forms glucose. Bio/Technology 14: 7176.
  • 15
    Riedel, K., Ritter, J., Bronnenmeier, K. (1997) Synergistic interaction of the Clostridium stercorarium cellulases Avicelase I (CelZ) and Avicelase II (CelY) in the degradation of microcrystalline cellulose. FEMS Microbiol Lett 147: 239243.
  • 16
    Sakamoto, R., Arai, M., Murao, S. (1984) Enzymatic properties of hydrocellulase from Aspergillus aculeatus. J Ferment Technol 62: 561567.
  • 17
    Sakon, J., Irwin, D., Wilson, D.B., Karplus, P.A. (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nature Struct Biol 4: 810818.
  • 18
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 19
    Sedmak, J.J. & Grossberg, S.E. (1977) A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal Biochem 79: 544552.
  • 20
    Teeri, T.T. (1997) Crystalline cellulose degradation: new insights into the function of cellobiohydrolases. Trends Biotechnol 15: 160167.
  • 21
    Te'o, V.S.J., Saul, D.J., Bergquist, P.L. (1995) CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43: 291296.
  • 22
    Tomme, P., Gilkes, N.R., Miller, Jr, R.C., Warren, A.J., Kilburn, D.G. (1994) An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng 7: 117123.
  • 23
    Tomme, P., Warren, R.A.J., Gilkes, N.R. (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37: 181.
  • 24
    Warren, R.A.J., Gerhard, B., Gilkes, N.R., Owolabi, J.B., Kilburn, D.G., Miller, Jr, R.C. (1987) A bifunctional exoglucanase–endoglucanase fusion protein. Gene 61: 421427.
  • 25
    Wood, T.M. & Bhat, K.M. (1988) Methods for measuring cellulase activities. Methods Enzymol 160: 87112.
  • 26
    Zverlov, V., Mahr, S., Riedel, K., Bronnenmeier, K. (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144: 457465.