Molecular analysis of Methanobacterium phage ΨM2

Authors


Thomas Leisinger E-mail leisinger@micro.biol.ethz.ch; Tel. (1) 632 3324; Fax (1) 632 1148.

Abstract

The methanogenic archaeon Methanobacterium thermoautotrophicum Marburg is infected by the double-stranded DNA phage ΨM2. The complete phage genome sequence of 26 111 bp was established. Thirty-one open reading frames (orfs), all of them organized in the same direction of transcription, were identified. On the basis of comparison of the deduced amino acid sequences to known proteins and by searching for conserved motifs, putative functions were assigned to the products of six orfs. These included three proteins involved in packaging DNA into the capsid, two putative phage structural proteins and a protein related to the Int family of site-specific recombinases. Analysis of the N-terminal amino acid sequences of three phage-encoded proteins led to the identification of two genes encoding structural proteins and of peiP, the structural gene of pseudomurein endoisopeptidase. This enzyme is involved in the lysis of host cells, and it appears to belong to a novel enzyme family. peiP was overexpressed in Escherichia coli, and its product was shown to catalyse the in vitro lysis of M. thermoautotrophicum cells. Comparison of the phage ΨM2 DNA sequence with parts of the sequence of the wild-type phage ΨM1 suggests that ΨM2 is a deletion derivative, which formed by homologous recombination between two copies of a direct repeat.

Ancillary