• 1
    Arendt, E.K., Daly, C., Fitzgerald, G.F., Van De Guchte, M. (1994) Molecular characterization of lactococcal bacteriophage Tuc2009 and identification and analysis of genes encoding lysin, a putative holin, and two structural proteins. Appl Environ Microbiol 60: 18751883.
  • 2
    Arrecubieta, C., García, E., López, R. (1995) Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167: 17.
  • 3
    Baba, T. & Schneewind, O. (1998) Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J 17: 46394646.
  • 4
    Béliveau, C., Potvin, C., Trudel, J., Asselin, A., Bellemare, G. (1991) Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. J Bacteriol 173: 56195623.
  • 5
    Berry, A.M., Lock, R.A., Hansman, D., Paton, J.C. (1989) Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect Immun 57: 23242330.
  • 6
    Croux, C., Ronda, C., López, R., García, J.L. (1993) Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol Microbiol 9: 10191025.
  • 7
    Díaz, E., García, E., Ascaso, C., Méndez, E., López, R., García, J.L. (1989) Subcellular localization of the major pneumococcal autolysin: a peculiar mechanism of secretion in Escherichia coli. J Biol Chem 264: 12381244.
  • 8
    Díaz, E., López, R., García, J.L. (1990) Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. Proc Natl Acad Sci USA 87: 81258129.
  • 9
    Díaz, E., López, R., García, J.L. (1991) Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. J Biol Chem 266: 54645471.
  • 10
    Díaz, E., Munthali, M., Lünsdorf, H., Höltje, J.-V., Timmis, K. (1996) The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Mol Microbiol 19: 667681.
  • 11
    Doolittle, R.F. (1995) Convergent evolution: the need to be explicit. Annu Rev Biochem 64: 287314.
  • 12
    Fastrez, J. (1996) Phage lysozymes. In Lysozymes: Model Enzymes in Biochemistry and Biology. Jollès, P. (ed.). Basel: Birkhäuser, pp. 3564.
  • 13
    García, E., Rojo, J.M., García, P., Ronda, C., López, R., Tomasz, A. (1982) Preparation of an antiserum against the pneumococcal autolysin — Inhibition of autolysin activity and some autolytic processes by the antibody. FEMS Microbiol Lett 14: 133136.
  • 14
    García, E., García, J.L., Ronda, C., García, P., López, R. (1985) Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol Gen Genet 201: 225230.
  • 15
    García, J.L., García, E., López, R. (1987) Overproduction and rapid purification of the amidase of Streptococcus pneumoniae. Arch Microbiol 149: 5256.
  • 16
    García, E., García, J.L., García, P., Arrarás, A., Sánchez-Puelles, J.M., López, R. (1988) Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci USA 85: 914918.
  • 17
    García, P., García, J.L., García, E., López, R. (1989) Purification and characterization of the autolytic glycosidase of Streptococcus pneumoniae. Biochem Biophys Res Commun 158: 251256.
  • 18
    García, P., García, J.L., García, E., Sánchez-Puelles, J.M., López, R. (1990) Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86: 8188.
  • 19
    García, J.L., Díaz, E., Romero, A., García, P. (1994) Carboxy-terminal deletion analysis of the major pneumococcal autolysin. J Bacteriol 176: 40664072.
  • 20
    García, J.L., Sánchez-Beato, A.R., Medrano, F.J., López, R. (1998) Versatility of choline-binding domain. Microb Drug Resist 4: 2536.
  • 21
    García, P., González, M.P., García, E., López, R., García, J.L. (1999) LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31: 12751277.
  • 22
    Von Heijne, G. (1988) Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947: 307333.
  • 23
    Ishikawa, S., Hara, Y., Ohnishi, R., Sekiguchi, J. (1998) Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180: 25492555.
  • 24
    Kuroda, A. & Sekiguchi, J. (1991) Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173: 73047312.
  • 25
    Lacks, S. & Hotchkiss, R.D. (1960) A study of the genetic material determining an enzyme activity in Pneumococcus. Biochim Biophys Acta 39: 508517.
  • 26
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.
  • 27
    López, R., Ronda, C., García, E. (1990) Autolysins are directly involved in the bactericidal effect caused by penicillin in wild type and in tolerant pneumococci. FEMS Microbiol Lett 66: 317322.
  • 28
    López, R., García, E., García, P., García, J.L. (1997) The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resistance 3: 199211.
  • 29
    Margot, P., Wahlen, M., Gholamhuseinian, A., Piggot, P., Karamata, D. (1998) The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180: 749752.
  • 30
    Martín, A.C., López, R., García, P. (1998) Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 180: 210217.
  • 31
    Mosser, J.L. & Tomasz, A. (1970) Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem 245: 287298.
  • 32
    Neve, H., Zenz, K.I., Desiere, F., Koch, A., Heller, K.J., Brüssow, H. (1998) Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution. Virology 241: 6172.
  • 33
    Oki, M., Karikawa, M., Yamada, K., Taketo, A., Kodaira, K.-I. (1996) Cloning, sequence analysis, and expression of the genes encoding lytic functions of bacteriophage φg1e. Gene 176: 215223.
  • 34
    Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y.-M., Suginaka, H., Tomasz, A. (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci USA 92: 285289.
  • 35
    Ottolenghi-Nightingale, E. (1972) Competence of pneumococcal isolates and bacterial transformation in man. Infect Immun 6: 785792.
  • 36
    Paton, J.C., Berry, A.M., Lock, R.A. (1997) Molecular analysis of putative pneumococcal virulence proteins. Microb Drug Resistance 3: 110.
  • 37
    Privalov, P.L. (1989) Thermodynamic problems of protein structure. Annu Rev Biophys Chem 18: 4769.
  • 38
    Rashid, M., Mori, M., Sekiguchi, J. (1995) Glucosaminidase of Bacillus subtilis : cloning, regulation, primary structure and biochemical characterization. Microbiology 141: 23912404.
  • 39
    Ronda, C., García, J.L., García, E., Sánchez-Puelles, J.M., López, R. (1987) Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. Eur J Biochem 164: 621624.
  • 40
    Salyers, A.A. & Whitt, D.D. (1994) Bacterial Pathogenesis. A Molecular Approach. Washington DC: American Society for Microbiology Press.
  • 41
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 42
    Sánchez-Puelles, J.M., Ronda, C., García, J.L., García, P., López, R., García, E. (1986 a) Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur J Biochem 158: 289293.
  • 43
    Sánchez-Puelles, J.M., Ronda, C., García, E., Méndez, E., García, J.L., López, R. (1986 b) A new peptidoglycan hydrolase in Streptococcus pneumoniae. FEMS Microbiol Lett 35: 163166.
  • 44
    Sánchez-Puelles, J.M., Sanz, J.M., García, J.L., García, E. (1990) Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene 89: 6975.
  • 45
    Sánchez-Puelles, J.M., Sanz, J.M., García, J.L., García, E. (1992) Immobilization and single-step purification of fusion proteins using DEAE-cellulose. Eur J Biochem 203: 153159.
  • 46
    Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 54635467.
  • 47
    Sanz, J.M. & García, J.L. (1990) Structural studies of the lysozyme coded by the pneumococcal phage Cp-1. Conformational changes induced by choline. Eur J Biochem 187: 409416.
  • 48
    Sanz, J.M., López, R., García, J.L. (1988) Structural requirements of choline derivatives for ‘conversion’ of pneumococcal amidase. A new single-step procedure for purification of this autolysin. FEBS Lett 232: 308312.
  • 49
    Sanz, J.M., García, P., García, J.L. (1992 a) Role of Asp-9 and Glu-36 in the active site of the pneumococcal CPL1 lysozyme: an evolutionary perspective of lysozyme mechanism. Biochemistry 31: 84958499.
  • 50
    Sanz, J.M., Díaz, E., García, J.L. (1992 b) Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases. Mol Microbiol 6: 921931.
  • 51
    Sheehan, M.M., García, J.L., López, R., García, P. (1997) The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol Microbiol 25: 717725.
  • 52
    Sheehan, M.M., Stanley, E., Fitzgerald, G.F., Van Sinderen, D. (1999) Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus. Appl Environ Microbiol 65: 569577.
  • 53
    Shockman, G.D. & Höltje, J.-V. (1994) Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall. Ghuysen, J.-M., and Hakenbeck, R. (eds). Amsterdam: Elsevier, pp. 131166.
  • 54
    Speicher, D.W. (1994) Methods and strategies for the sequence analysis of proteins on PVDF membranes. Methods 6: 262273.
  • 55
    Studier, F.W. & Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113130.
  • 56
    Tabor, S. (1990) Expression using the T7 RNA polymerase/promoter system. In Current Protocols in Molecular Biology. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds). New York: Greene Publishing Associated and John Wiley & Sons, pp.
  • 57
    Tomasz, A. (1979) The mechanism of the irreversible antimicrobial effects of penicillin: how the beta lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33: 113137.
  • 58
    Tomasz, A. & Waks, S. (1975) Enzyme replacement in a bacterium: phenotypic correction by the experimental introduction of the wild type enzyme into a live enzyme defective mutant pneumococcus. Biochem Biophys Res Commun 65: 13111319.
  • 59
    Tomasz, A. & Westphal, M. (1971) Abnormal autolytic enzyme in a pneumococcus with altered teichoic acid composition. Proc Natl Acad Sci USA 68: 26272630.
  • 60
    Usobiaga, P., Medrano, F.J., Gasset, M., García, J.L., Saiz, J.L., Rivas, G., et al (1996) Structural organization of the major autolysin from Streptococcus pneumoniae. J Biol Chem 271: 68326838.
  • 61
    Ward, J.B. (1973) The chain length of glycans in bacterial walls. Biochem J 133: 395398.
  • 62
    Wuenscher, M.D., Köhler, S., Bubert, A., Gerike, U., Goebel, W. (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, P60, has bacteriolytic activity. J Bacteriol 175: 34913501.
  • 63
    Yother, J. & White, J.M. (1994) Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol 176: 29762985.