The association of the essential Escherichia coli protein NusA with RNA polymerase increases pausing and the efficiency of termination at intrinsic terminators. NusA is also part of the phage λ N protein-modified antitermination complex that functions to prevent transcriptional termination. We have investigated the structure of NusA using various deletion fragments of NusA in a variety of in vitro assays. Sequence and structural alignments have suggested that NusA has both S1 and KH homology regions that are thought to bind RNA. We show here that the portion of NusA containing the S1 and KH homology regions is important for NusA to enhance both termination and antitermination. There are two RNA polymerase-binding regions in NusA, one in the amino-terminal 137 amino acids and the other in the carboxy-terminal 264 amino acids; only the amino-terminal RNA polymerase-binding region provides a functional contact that enhances termination at an intrinsic terminator or antitermination by N. The carboxy-terminal region of NusA is also required for interaction with N and is important for the formation of an N–NusA–nut site or N–NusA–RNA polymerase–nut site complex; the instability of complexes lacking this carboxy-terminal region of NusA that binds N and RNA polymerase can be compensated for by the presence of the additional E. coli elongation factors, NusB, NusG and ribosomal protein S10.