SEARCH

SEARCH BY CITATION

References

  • 1
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped Blast and Psi-Blast: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • 2
    Baikalov, I., Schröder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R.P., Dickerson, R.E. (1996) Structure of the Escherichia coli response regulator NarL. Biochemistry 35: 1105311061.
  • 3
    Bibb, M.J., Findlay, P.R., Johnson, M.W. (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30: 157166.
  • 4
    Chater, K.F. (1972) A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72: 928.
  • 5
    Chater, K.F. (1975) Construction and phenotypes of double sporulation deficient mutants in Streptomyces coelicolor A3(2). J Gen Microbiol 87: 312325.
  • 6
    Chater, K.F. (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 14651478.
  • 7
    Chater, K.F., Bruton, C.J., Plaskitt, K.A., Buttner, M.J., Méndez, C., Helmann, J. (1989) The developmental fate of S. coelicolor hyphae depends crucially on a gene product homologous with the motility sigma factor of B. subtilis. Cell 59: 133143.
  • 8
    Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • 9
    Davis, N.K. & Chater, K.F. (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4: 16791691.
  • 10
    Davis, N.K. & Chater, K.F. (1992) The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet 232: 351358.
  • 11
    Devereux, J., Halberli, P., Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387395.
  • 12
    Flärdh, K., Findlay, K.C., Chater, K.F. (1999) Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145: 22292243.
  • 13
    Fujita, M. & Sadaie, Y. (1998) Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J Biochem 124: 98104.
  • 14
    Guthrie, E.P., Flaxman, C.S., White, J., Hodgson, D.A., Bibb, M.J., Chater, K.F. (1998) A response regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144: 727738.
  • 15
    Hakenbeck, R. & Stock, J.B. (1996) Analysis of two-component signal transduction systems involved in transcriptional regulation. In RNA Polymerase and Associated Factors (Part a) Methods in Enzymology, Vol. 273. Adhya, S. (ed.). San Diego: Academic Press, pp. 281300.
  • 16
    Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557580.
  • 17
    Hilleman, D., Puhler, A., Wohlleben, W. (1991) Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res 19: 727731.
  • 18
    Hoch, J.A. (1995) Control of cellular development in sporulating bacteria by the phosphorelay two-component signal transduction system. In Two-Component Signal Transduction. Hoch, J.A., and Silhavy, T.J. (eds). Washington DC: American Society for Microbiology Press, pp. 129144.
  • 19
    Hopwood, D.A., Wildermuth, H., Palmer, H.M. (1970) Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61: 397408.
  • 20
    Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., et al (1985) Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich: John Innes Foundation.
  • 21
    Janssen, G.R. & Bibb, M.J. (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133134.
  • 22
    Kelemen, G.H., Brown, G.L., Kormanec, J., Potúcková, L., Chater, K.F., Buttner, M.J. (1996). The positions of the sigma factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21: 593603.
  • 23
    Kelemen, G.H., Brian, P., Flärdh, K., Chamberlin, L., Chater, K.F., Buttner, M.J. (1998) Developmental regulation of the transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3(2). J Bacteriol 180: 25152521.
  • 24
    Kieser, T. & Hopwood, D.A. (1991). Genetic manipulation of Streptomyces: integrating vectors and gene replacement. In Bacterial Genetic Systems. Methods in Enzymology, Vol. 204. Miller, J.H. (ed.). San Diego: Academic Press, pp. 430458.
  • 25
    Lomovskaya, N.D., Mkrtumian, N.M., Gostimskaya, N.L., Danilenko, V.N. (1972). Characterisation of temperate actinophage ΦC31 isolated from Streptomyces coelicolor A3(2). J Virol 9: 258262.
  • 26
    Lukat, G.S., McCleary, W.R., Stock, A.M., Stock, J.B. (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phosphodonors. Proc Natl Acad Sci USA 89: 718722.
  • 27
    Lydiate, D.J., Méndez, C., Kieser, H.M., Hopwood, D.A. (1988). Mutation and cloning of clustered Streptomyces genes essential for sulphate metabolism. Mol Gen Genet 211: 415423.
  • 28
    MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., MacNeil, T. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integrative vector. Gene 111: 6168.
  • 29
    McVittie, A.M. (1974). Ultrastructural studies on sporulation in wild-type and white colony mutants of Streptomyces coelicolor. J Gen Microbiol 81: 291302.
  • 30
    Méndez, C. & Chater, K.F. (1987). Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2). J Bacteriol 169: 57155720.
  • 31
    Msadek, T., Kunst, F., Rapoport, G. (1995) A signal transduction network in Bacillus subtilis includes the DegS/DegU and ComP/ComA two-component systems. In Two-Component Signal Transduction. Hoch, J.A., and Silhavy, T.J. (eds). Washington DC: American Society for Microbiology Press, pp. 447471.
  • 32
    Oh, S.H. & Chater, K.F. (1997). Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 179: 122127.
  • 33
    Potúcková, L., Kelemen, G.H., Findlay, K.C., Lonetto, M.A., Buttner, M.J., Kormanec, J. (1995). A new RNA polymerase sigma factor σF, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17: 3748.
  • 34
    Redenbach, M., Kieser, H.M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H., et al (1996). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21: 7796.
  • 35
    Ryding, N.J., Kelemen, G.H., Whatling, C.A., Flärdh, K., Buttner, M.J., Chater, K.F. (1998) A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 29: 343357.
  • 36
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 37
    Stewart, V. & Rabin, R.S. (1995) Dual sensors and dual response regulators interact to control nitrate- and nitrite-responsive gene expression in Escherichia coli. In Two-Component Signal Transduction. Hoch, J.A., and Silhavy, T.J. (eds). Washington DC: American Society for Microbiology Press, pp. 233252.
  • 38
    Stragier, P. & Losick, R. (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30: 297341.
  • 39
    Stultz, C.M., Nambudripad, R., Lathrop, R.H., White, J.V. (1997) Predicting protein structure with probabilistic models. In Protein Structural Biology in Bio-Medical Research. Advances in Molecular and Cell Biology, Vol. 22B. Allewell, N., and Woodward, C. (eds). Greenwich: JAI Press.
  • 40
    Tan, H. & Chater, K.F. (1993). Two developmentally controlled promoters of Streptomyces coelicolor A3(2) that resemble the major class of motility-related promoters in other bacteria. J Bacteriol 175: 933940.
  • 41
    Tan, H., Yang, H., Tian, Y., Wu, W., Whatling, C.A., Chamberlin, L.C., et al (1998) The Streptomyces coelicolor sporulation-specific σWhiG form of RNA polymerase transcribes a gene encoding a ProX-like protein that is dispensable for sporulation. Gene 212: 137146.
  • 42
    Tsui, H.C.T., Pease, A.J., Koehler, T.M., Winkler, M.E. (1994) Detection and quantitation of RNA transcribed from bacterial chromosomes and plasmids. Methods Mol Genet 3: 179204.
  • 43
    Wright, F. & Bibb, M.J. (1992). Codon usage in the G+C-rich Streptomyces genome. Gene 113: 5565.
  • 44
    Zalacaín, M., González, A., Guerrero, M.C., Mattaliano, R.J., Malpartida, F., Jiménez, A. (1986). Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucleic Acids Res 14: 15651581.