SEARCH

SEARCH BY CITATION

References

  • 1
    Adler, J. (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74: 7791.
  • 2
    Alam, M., and Oesterhelt, D. (1984) Morphology, function and isolation of halobacterial flagella. J Mol Biol 176: 459475.
  • 3
    Alam, M., Lebert, M., Oesterhelt, D., and Hazelbauer, G.L. (1989) Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J 8: 631640.
  • 4
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • 5
    Bibikov, S.I., Grishanin, R.N., Kaulen, A.D., Marwan, W., Oesterhelt, D., and Skulachev, V.P. (1993) Bacteriorhodopsin is involved in halobacterial photoreceptor. Proc Natl Acad Sci USA 90: 94469450.
  • 6
    Boehringer Mannheim (1995) The DIG Systems User's Guide for Filter Hybridization. Mannheim, Germany: Boehringer Mannheim.
  • 7
    Brooun, A., Zhang, W.S., and Alam, M. (1997) Primary structure and functional analysis of the soluble transducer protein HtrXI in the Archaeon Halobacterium salinarium. J Bacteriol 179: 29632968.
  • 8
    Brooun, A., Bell, J., Freitas, T., Larsen, R.W., and Alam, M. (1998) An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome C oxidase and eubacterial methyl-accepting chemotaxis proteins. J Bacteriol 180: 16421646.
  • 9
    Cline, S.W., Lam, W.L., Charlebois, R.L., Schwalkwyk, L.C., and Doolittle, W.F. (1989) Transformation methods for halophilic archaebacteria. Can J Microbiol 35: 148152.
  • 10
    Dundas, I.E., and Halvorson, H.O. (1966) Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J Bacteriol 91: 113119.
  • 11
    Genetics Computer Group (1994) Program Manual for the Wisconsin Package. Madison, WI: Genetics Computer Group.
  • 12
    Hartmann, R., Sickinger, H.D., and Oesterhelt, D. (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77: 38213825.
  • 13
    Helgerson, S.L., Siemsen, S.L., and Dratz, E.A. (1992) Enrichment of bacteriorhodopsin with isotopically labeled amino acids by biosynthetic incorporation in Halobacterium halobium. Can J Microbiol 38: 11811185.
  • 14
    Hou, S.B., Brooun, A., Yu, H.S., Freitas, T., and Alam, M. (1998) Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum. J Bacteriol 180: 16001602.
  • 15
    Kehry, M.R., Doak, T.G., and Dahlquist, F.W. (1984) Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J Biol Chem 259: 1182811836.
  • 16
    Lam, W.L., and Doolittle, W.F. (1992) Mevinolin resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme a reductase in the archaebacterium Haloferax volcanii. J Biol Chem 267: 58295834.
  • 17
    Le Moual, H., and Koshland, Jr, D.E. (1996) Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261: 568585.
  • 18
    MacDonald, R.E., Greene, R.V., and Lanyi, J.K. (1977) Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. Biochemistry 16: 32273235.
  • 19
    Marwan, W., and Oesterhelt, D. (1990) Quantitation of photochromism of sensory rhodopsin I by computerized tracking of Halobacterium halobium cells. J Mol Biol 215: 277285.
  • 20
    Marwan, W., and Oesterhelt, D. (2000) Archaeal vision and bacterial smelling: sensory control of the swimming behavior by two component signaling and fumarate. Am Soc Microbiol News (in press).
  • 21
    Marwan, W., Alam, M., and Oesterhelt, D. (1991) Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J Bacteriol 173: 19711977.
  • 22
    Matveeva, N.I., Nikolaev Yu, A., Voronina, N.A., and Plakunov, V.K. (1986) Amino acid transport and its relation to energetics in extreme halophilic bacterial cells. Mikrobiologiya 55: 548554.
  • 23
    Mesibov, R., and Adler, J. (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112: 315326.
  • 24
    Monstadt, G.M., and Holldorf, A.W. (1991) Arginine deiminase from Halobacterium salinarium : purification and properties. Biochem J 273: 739746.
  • 25
    Nowlin, D.M., Bollinger, J., and Hazelbauer, G.L. (1988) Site-directed mutations altering methyl-accepting residues of a sensory transducer protein. Proteins 3: 102112.
  • 26
    Oesterhelt, D., and Krippahl, G. (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants. Ann Microbiol (Paris) 134B: 137150.
  • 27
    Oesterhelt, D., and Stoeckenius, W. (1974) Isolation of the cell membranes of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31: 667678.
  • 28
    Rosenshine, I., Zusman, T., Werczberger, R., and Mevarech, M. (1987) Amplification of specific DNA sequences correlates with resistance of the archaebacterium Halobacterium volcanii to the dihydrofolate reductase inhibitors trimethoprim and methotrexate. Mol Gen Genet 208: 518522.
  • 29
    Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 266: 525539.
  • 30
    Rudolph, J., Nordmann, B., Storch, K.F., Gruenberg, H., Rodewald, K., and Oesterhelt, D. (1996) A family in halobacterial transducer proteins. FEMS Microbiol Lett 139: 161168.
  • 31
    Ruepp, A., and Soppa, J. (1996) Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium ): genes, gene products, and transcripts of the arcRACB gene cluster. J Bacteriol 178: 49424947.
  • 32
    Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 33
    Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 54635467.
  • 34
    Seidel, R., Scharf, B., Gautel, M., Kleine, K., Oesterhelt, D., and Engelhard, M. (1995) The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci USA 92: 30363040.
  • 35
    Soppa, J. (1994) Compilation of halobacterial protein coding genes, the halobacterial codon usage table and its use. Syst Appl Microbiol 16: 725733.
  • 36
    Spudich, E.N., and Spudich, J.L. (1982) Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Proc Natl Acad Sci USA 79: 43084312.
  • 37
    Storch, K.F., Rudolph, J., and Oesterhelt, D. (1999) Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J 18: 11461158.
  • 38
    Terwilliger, T.C., Wang, J.Y., and Koshland, Jr, D.E. (1986) Kinetics of receptor modification — the multiply methylated aspartate receptors involved in bacterial chemotaxis. J Biol Chem 261: 1081410820.
  • 39
    Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • 40
    Tso, W., and Adler, J. (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118: 560576.
  • 41
    Yao, V.J., and Spudich, J.L. (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin-I. Proc Natl Acad Sci USA 89: 1191511919.
  • 42
    Yu, H.S., and Alam, M. (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett 156: 265269.
  • 43
    Zhang, W., Brooun, A., McCandless, J., Banda, P., and Alam, M. (1996a) Signal transduction in the Archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc Natl Acad Sci USA 93: 46494654.
  • 44
    Zhang, W., Brooun, A., Mueller, M.M., and Alam, M. (1996b) The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci USA 93: 82308235.
  • 45
    Zhang, X.N., and Spudich, J.L. (1998) HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. J Biol Chem 273: 1972219728.
  • 46
    Zhang, X.N., Zhu, J., and Spudich, J.L. (1999) The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc Natl Acad Sci USA 96: 857862.