SEARCH

SEARCH BY CITATION

References

  • Ævarsson, A., Brazhnikov, E., Garber, M., Zheltonosova, J., Chirgadze, Y., Al-Karadaghi, S., et al. (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J 13: 36693677.
  • An, G., Justesen, J., Watson, R.J., Friesen, J.D. (1979) Cloning the spoT gene of Escherichia coli. identification of the spoT gene product. J Bacteriol 137: 11001110.
  • Bernander, R., Åkerlund, T., Nordström, K. (1995) Inhibition and restart of initiation of chromosome replication. effects on exponentially growing Escherichia coli cells. J Bacteriol 177: 16701682.
  • Björkman, J., Nagaev, I., Berg, O.G., Hughes, D., Andersson, D.I. (2000) Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 14791482.
  • Bochner, B.R. & Ames, B.N. (1982) Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257: 97599769.
  • Bremer, H. & Dennis, P.P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. 2. Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Brooks Low, K., Magasanik, B., et al. (eds). Washington, DC: American Society for Microbiology Press, pp. 15531569.
  • Cashel, M., Gentry, D.R., Hernandez, V.J., Vinelli, D. (1996) The stringent response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. 2. Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Brooks Low, K., Magasanik, B., et al. (eds). Washington, DC: American Society for Microbiology Press, pp. 14581496.
  • Ehrenberg, M. & Kurland, C.G. (1987) Measurement of translational kinetic parameters. Methods Enzymol 164: 611631.
  • Ehrenberg, M., Bilgin, N., Kurland, C.G. (1990) Design and use of a fast and accurate in vitro translation system. In Ribosomes and Protein Synthesis: a Practical Approach. Spedding, G. (ed. ). New York: IRL Press at Oxford University Press, pp. 101129.
  • Fehr, S. & Richter, D. (1981) Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3′,5′–polyphosphate synthetases. J Bacteriol 145: 6873.
  • Fiil, N.P., Willumsen, B.M., Friesen, J.D., Von Meyenburg, K. (1977) Interaction of alleles of the relA, relC and spoT genes in Escherichia coli: analysis of the interconversion of GTP, ppGpp, and pppGpp. Mol Gen Genet 150: 87101.
  • Friesen, J., Fiil, N., Von Meyenburg, K. (1975) Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli. J Biol Chem 250: 304309.
  • Hamming, J., Ab, G., Gruber, M. (1980) E. coli RNA polymerase–rRNA promoter interactions and the effect of ppGpp. Nucleic Acids Res 8: 39473963.
  • Hansen, M.T., Pato, M.L., Molin, S., Fiil, N.P., Von Meyenburg, K. (1975) Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J Bacteriol 122: 585591.
  • Haseltine, W. & Block, R. (1973) Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor sites of ribosomes. Proc Natl Acad Sci USA 70: 15641568.
  • Heinemeyer, E.A. & Richter, D. (1978) Mechanism of the in vitro breakdown of guanosine 5′-diphosphate 3′-diphosphate in Escherichia coli. Proc Natl Acad Sci USA 75: 41804183.
  • Hernandez, V.J. & Bremer, H. (1990) Guanosine tetraphosphate (ppGpp) dependence of growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 265: 1160511614.
  • Hernandez, V.J. & Bremer, H. (1991) Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266: 59915999.
  • Johanson, U. & Hughes, D. (1994) Fusidic acid-resistant mutants define three regions in elongation factor G of Salmonella typhimurium. Gene 143: 5559.
  • Karimi, R., Pavlov, M.Y., Buckingham, R.H., Ehrenberg, M. (1999) Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3: 601609.
  • Kaziro, Y. (1978) The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim Biophys Acta 505: 95127.
  • Laffler, T. & Gallant, J. (1974) SpoT, a new genetic locus involved in the stringent response in E. coli. Cell 1: 2730.
  • Little, R. & Bremer, H. (1982) Quantitation of guanosine 5′,3′-bidiphosphate in extracts from bacterial cells by ion-pair reverse-phase high-performance liquid chromatography. Anal Biochem 126: 381388.
  • Miller, J.H. (1992) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  • Moazed, D. & Noller, H.F. (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342: 142148.
  • Murray, K.D. & Bremer, H. (1996) Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259: 4157.
  • Neuhard, J. & Nygaard, P. (1987) Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. 1. Neidhardt, F.C., Ingraham, J.L., Brooks Low, K., Magasanik, B., Schaechter, M., and Umbarger, H.E. (eds). Washington, DC: American Society for Microbiology Press, pp. 447473.
  • Reddy, P.S., Raghavan, A., Chatterji, D. (1995) Evidence for a ppGpp-binding site on Escherichia coli RNA polymerase. proximity relationship with the rifampicin-binding domain. Mol Microbiol 15: 255265.
  • Richter Dahlfors, A.A. & Kurland, C.G. (1990) Novel mutants of elongation factor G. J Mol Biol 215: 549557.
  • Rodnina, M.V., Savelsbergh, A., Katunin, V.I., Wintermeyer, W. (1997) Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385: 3741.
  • Ryals, J., Little, R., Bremer, H. (1982) Control of rRNA and tRNA synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol 151: 12611268.
  • Sanderson, K.E. & Roth, J.R. (1983) Linkage map of Salmonella typhimurium, edition VI. Microbiol Rev 47: 410453.
  • Schaechter, E., Malloe, O., Kjeldgaard, N.O. (1958) Dependence on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19: 592606.
  • Sorensen, M.A., Jensen, K.F., Pedersen, S. (1994) High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli. J Mol Biol 236: 441454.
  • Tubulekas, I. & Hughes, D. (1993) Suppression of rpsL phenotypes by tuf mutations reveals a unique relationship between translation elongation and growth rate. Mol Microbiol 7: 275284.
  • Willie, G.R., Richman, N., Godtfredsen, W.O., Bodley, J.W. (1975) Some characteristics of and structural requirements for the interaction of 24, 25-dihydrofusidic acid with ribosome·elongation factor G complexes. Biochemistry 14: 17131718.
  • Wold, S., Skarstad, K., Steen, H.B., Stokke, T., Boye, E. (1994) The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J 13: 20972102.
  • Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., Cashel, M. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266: 59805990.
  • Zhang, X. & Bremer, H. (1995) Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270: 1118111189.