Neisseria gonorrhoeae (the gonococcus) is the causative agent of the sexually transmitted disease gonorrhoea. Most gonococcal infections remain localized to the genital tract but, in a small proportion of untreated cases, the bacterium becomes systemic to produce the serious complication of disseminated gonococcal infection (DGI). We have identified a large region of chromosomal DNA in N. gonorrhoeae that is not found in a subset of gonococcal isolates (a genetic island), in the closely related pathogen, Neisseria meningitidis or in commensal Neisseria that do not usually cause disease. Certain versions of the island carry a serum resistance locus and a gene for the production of a cytotoxin; these versions of the island are found preferentially in DGI isolates. All versions of the genetic island encode homologues of F factor conjugation proteins, suggesting that, like some other pathogenicity islands, this region encodes a conjugation-like secretion system. Consistent with this hypothesis, a wild-type strain released large amounts of DNA into the medium during exponential growth without cell lysis, whereas an isogenic strain mutated in a peptidoglycan hydrolase gene (atlA) was drastically reduced in its ability to donate DNA for transformation during growth. This genetic island constitutes the first major discriminating factor between the gonococcus and the other Neisseria and carries genes for providing DNA for genetic transformation.