• 1
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402DOI: 10.1093/nar/25.17.3389
  • 2
    Aue, B.J. & Deibel, R.H. (1967) Fumarate reductase activity of Streptococcus faecalis. J Bacteriol 93: 17701776
  • 3
    Babbs, C.F. (1990) Hypothesis paper: free radicals and the etiology of colon cancer. Free Radic Biol Med 8: 191200
  • 4
    Babior, B.M. (1999) NADPH oxidase: an update. Blood 93: 14641476
  • 5
    Barja, G. (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31: 347366
  • 6
    Baum, R.H. & Dolin, M.I. (1965) Isolation of 2-solanesyl-1,4-naphthoquinone from Streptococcus faecalis, 10Cl. J Biol Chem 240: 34253433
  • 7
    Bornside, G.H., Donovan, W.E., Myers, M.B. (1976) Intracolonic tensions of oxygen and carbon dioxide in germfree, conventional, and gnotobiotic rats. Proc Soc Exp Biol Med 151: 437441
  • 8
    Britton, L., Malinowski, D.P., Fridovich, I. (1978) Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms. J Bacteriol 134: 229236
  • 9
    Buettner, G.R. & Mason, R.P. (1990) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo. Methods Enzymol 186: 127133
  • 10
    Callegan, M.C., Jett, B.D., Hancock, L.E., Gilmore, M.S. (1999) Role of hemolysin BL in the pathogenesis of extraintestinal Bacillus cereus infection assessed in an endophthalmitis model. Infect Immun 67: 33573366
  • 11
    Claiborne, A., Ross, R.P., Parsonage, D. (1992) Flavin-linked peroxide reductases: protein-sulfenic acids and the oxidative stress response. Trends Biochem Sci 17: 183186
  • 12
    Collins, M.D. & Jones, D. (1979) The distribution of isoprenoid quinones in streptococci of serological groups D and N. J Gen Microbiol 114: 2733
  • 13
    Collins, M.D., Shah, H.N., Minnikin, D.E. (1980) A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 48: 277282
  • 14
    Devereux, J., Haeberli, P., Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids 12: 387395
  • 15
    Devriese, L.A., Pot, B., Collins, M.D. (1993) Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J Appl Bacteriol 75: 399408
  • 16
    Erhardt, J.G., Lim, S.S., Bode, J.C., Bode, C. (1997) A diet rich in fat and poor in dietary fiber increases the in vitro formation of reactive oxygen species in human feces. J Nutr 127: 106109
  • 17
    Farrow, J.A.E., Jones, D., Phillips, B.A., Collins, M.D. (1983) Taxonomic studies on some group D streptococci. J Gen Microbiol 129: 14231432
  • 18
    Finkelstein, E., Rosen, G.M., Rauckman, E.J. (1979) Spin trapping of superoxide. Mol Pharmacol 16: 676685
  • 19
    Frejaville, C., Karoui, H., Tuccio, B., Le Moigne, F., Culcasi, M., Pietri, S. , et al. (1995) 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J Med Chem 38: 258265
  • 20
    Fridovich, I. (1997) Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 272: 1851518517DOI: 10.1074/jbc.272.30.18515
  • 21
    Fridovich, I. (1999) Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci 893: 1318
  • 22
    Gort, A.S. & Imlay, J.A. (1998) Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180: 14021410
  • 23
    Henle, E.S. & Linn, S. (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272: 1909519098
  • 24
    Huycke, M.M., Gilmore, M.S., Jett, B.D., Booth, J.L. (1992) Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract. J Infect Dis 166: 11881191
  • 25
    Huycke, M.M., Joyce, W., Wack, M.F. (1996) Augmented production of extracellular superoxide production by blood isolates of Enterococcus faecalis. J Infect Dis 173: 743746
  • 26
    Imlay, J.A. (1995) A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem 270: 1976719777
  • 27
    Irani, K., Xia, Y., Zweier, J.L., Der Sollott, S.J.C.J., Fearon, E.R. , et al. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 16491652
  • 28
    Iverson, T.M., Luna-Chavez, C., Cecchini, G., Rees, D.C. (1999) Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284: 19611966DOI: 10.1126/science.284.5422.1961
  • 29
    Jünemann, S. (1997) Cytochrome bd terminal oxidase. Biochim Biophys Acta 1321: 107127
  • 30
    Kirk, E. (1949) The quantity and composition of human colonic flatus. Gastroenterology 12: 782794
  • 31
    Liu, S. (1999) Cooperation of a ‘reactive oxygen cycle’ with the Q cycle and the proton cycle in the respiratory chain: superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr 31: 367376
  • 32
    Lund, E.K., Wharf, S.G., Fairweather-Tait, S., Johnson, I.T. (1999) Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am J Clin Nutr 69: 250255
  • 33
    Meganathan, R. (1996) Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzymne Q). In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C. (ed.). Washington, DC: American Society for Microbiology Press, pp. 642656
  • 34
    Miller, R.A. & Britigan, B.E. (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10: 118
  • 35
    Murray, B.E., Singh, K.V., Ross, R.P., Heath, J.D., Dunny, G.M., Weinstock, G.M. (1993) Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175: 52165223
  • 36
    Patel, M.P., Marcinkeviciene, J., Blanchard, J.S. (1998) Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions. FEMS Microbiol Lett 166: 155163
  • 37
    Pittard, A.J. (1996) Biosynthesis of the aromatic amino acids. In Escherichia coli and Salmonella: Cellular and Molecular Biology Neidhardt, F.C. (ed.). Washington, DC: American Society for Microbiology Press, pp. 458484
  • 38
    Pritchard, G.G. & Wimpenny, J.W.T. (1978) Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. zymogenes grown in the presence of haematin. J Gen Microbiol 104: 1522
  • 39
    Pugh, S.Y.R. & Knowles, C.J. (1983) Synthesis of catalase by Streptococcus faecalis subsp. zymogenes. Arch Microbiol 136: 6063
  • 40
    Ross, R.P. & Claiborne, A. (1997) Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 151: 177183
  • 41
    Rouband, V., Sankarapandi, S., Kuppusamy, P., Tordo, P., Zweier, J.L. (1998) Quantitative measurement of superoxide generation and oxygen consumption from leukocytes using electron paramagnetic resonance spectroscopy. Anal Biochem 257: 210217
  • 42
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989 ) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • 43
    Shepard, B.D. & Gilmore, M.S. (1995) Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. In Methods in Molecular Biology: Electroporation and Electroprofusion of Microorganisms Protocols. Nickoloff, J.A. (ed.). Totowa, NJ: Humana Press, Inc., pp 217226
  • 44
    Sherrill, C. & Fahey, R.C. (1998) Import and metabolism of glutathione by Streptococcus mutans. J Bacteriol 180: 14541459
  • 45
    Shineberg, B. & Young, I.G. (1976) Biosynthesis of bacterial menaquinones: the membrane-associated 1,4-dihydroxy-2-naphthoate octaprenyltransferase of Escherichia coli. Biochemistry 15: 27542758
  • 46
    Snoep, J.L., Teixeira de Mattos, J.M., Neijssel, O.M. (1991) Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol Lett 81: 6366
  • 47
    Søballe, B. & Poole, R.K. (1999) Microbial ubiquinones: multiple role in respiration, gene regulation and oxidative stress management. Microbiology 145: 18171830
  • 48
    Steggerda, F.R. (1968) Gastrointestinal gas following food consumption. Ann New York Acad Sci 150: 5766
  • 49
    Triglia, T., Peterson, M., Kemp, D. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16: 8186
  • 50
    Van Hellemond, J.J. & Tielens, A.G.M. (1994) Expression and functional properties of fumarate reductase. Biochem J 304: 321331
  • 51
    Weaver, K.E. & Clewell, D.B. (1987) Transposon Tn917 delivery vectors for mutagenesis in Streptococcus faecalis. In Streptococcal Genetics. Ferretti, J. J., and Curtiss III, R. (eds). Washington, DC: American Society for Microbiology, pp. 1721
  • 52
    Winstedt, L., Frankenberg, L., Hederstedt, L., Von Wachenfeldt, C. (2000) Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J Bacteriol 182: 38633866
  • 53
    Winters, M.D., Schlinke, T.L., Joyce, W.A., Glore, W.R., Huycke, M.M. (1998) Prospective case-cohort control study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroenterol 93: 24912500
    Direct Link: