• 1
    Adler, H.I., Fisher, W.D., Cohen, A., Hardigree, A.A. (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 57: 321326
  • 2
    Anagnostopoulos, C. & Spizizen, J. (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81: 741746
  • 3
    Barák, I., Prepiak, P., Schmeisser, F. (1998) MinCD proteins control the septation process during sporulation of Bacillus subtilis. J Bacteriol 180: 53275333
  • 4
    De Boer, P.A.J., Crossley, R.E., Rothfield, L.I. (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56: 641649
  • 5
    De Boer, P.A.J., Crossley, R.E., Rothfield, L.I. (1990) Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci USA 87: 11291133
  • 6
    De Boer, P.A.J., Crossley, R.E., Hand, A.R., Rothfield, L.I. (1991) The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J 10: 43714380
  • 7
    Cha, J.-H. & Stewart, G.C. (1997) The divIVA minicell locus of Bacillus subtilis. J Bacteriol 179: 16711683
  • 8
    Chen, C.M., Misra, T.K., Silver, S., Rosen, B.P. (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261: 1503015038
  • 9
    Cordell, S.C. & Löwe, J. (2001) Crystal structure of the bacterial cell division regulator MinD. FEBS Lett 492: 160165DOI: 10.1016/s0014-5793(01)02216-5
  • 10
    Edwards, D.H. & Errington, J. (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24: 905915
  • 11
    Errington, J. & Mandelstam, J. (1983 ) Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoIIA, in Bacillus subtilis. J Gen Microbiol 129: 20912101
  • 12
    Fu, X., Shih, Y.L., Zhang, Y., Rothfield, L.I. (2001) The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci USA 98: 980985
  • 13
    Gérard, E., Labedan, B., Forterre, P. (1998) Isolation of a minD-like gene in the hyperthermophilic archaeon Pyrococcus AL585, and phylogenetic characterization of related proteins in the three domains of life. Gene 222: 99106DOI: 10.1016/s0378-1119(98)00471-5
  • 14
    Glaser, P., Sharpe, M.E., Raether, B., Perego, M., Ohlsen, K., Errington, J. (1997) Dynamic, mitotic-like behaviour of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11: 11601168
  • 15
    Hale, C.A., Meinhardt, H., De Boer P.A.J. (2001) Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20: 15631572
  • 16
    Hauser, P.M. & Errington, J. (1995) Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. J Bacteriol 177: 39233931
  • 17
    Hayashi, I., Oyama, T., Morikawa, K. (2001) Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus. EMBO J 20: 18191828DOI: 10.1093/emboj/20.8.1819
  • 18
    Hiraga, S. (2000) Dynamic localization of bacterial and plasmid chromosomes. Annu Rev Genet 34: 2159
  • 19
    Hu, Z. & Lutkenhaus, J. (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34: 8290
  • 20
    Hu, Z., Mukherjee, A., Pichoff, S., Lutkenhaus, J. (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96: 1481914824
  • 21
    Huang, J., Cao, C., Lutkenhaus, J. (1996) Interaction between FtsZ and inhibitors of cell division. J Bacteriol 178: 50805085
  • 22
    Jenkinson, H.F. (1983) Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol 129: 19451958
  • 23
    Koonin, E.V. (1993) A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229: 11651174
  • 24
    Lee, S. & Price, C.W. (1993) The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol Microbiol 7: 601610
  • 25
    Levin, P.A., Margolis, P.S., Setlow, P., Losick, R., Sun, D. (1992) Identification of Bacillus subtilis genes for septum placement and shape determination. J Bacteriol 174: 67176728
  • 26
    Lewis, P.J. & Marston, A.L. (1999) GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227: 101109
  • 27
    Lutkenhaus, J. & Addinall, S.G. (1997) Bacterial cell division and the Z ring. Annu Rev Biochem 66: 93116
  • 28
    Marston, A.L. & Errington, J. (1999) Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33: 8496
  • 29
    Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E., Errington, J. (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12: 34193430
  • 30
    Quisel, J.D., Lin, D.C.-H., Grossman, A.D. (1999) Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 4: 665672
  • 31
    Raskin, D.M. & De Boer, P.A.J. (1999a) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181: 64196424
  • 32
    Raskin, D.M. & De Boer, P.A.J. (1999b) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96: 49714976
  • 33
    Reeve, J.N., Mendelson, N.H., Coyne, S.I., Hallock, L.L., Cole, R.M. (1973) Minicells of Bacillus subtilis. J Bacteriol 114: 860873
  • 34
    Rowland, S.L., Fu, X., Sayed, M.A., Zhang, Y., Cook, W.R., Rothfield, L.I. (2000) Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J Bacteriol 182: 613619
  • 35
    Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
  • 36
    Schmidt, A. & Hall, M.N. (1998) Signalling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 305338
  • 37
    Stevens, C.M., Daniel, R., Illing, N., Errington, J. (1992) Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol 174: 586594
  • 38
    Story, R.M. & Steitz, T.A. (1992) Structure of the recA protein–ADP complex. Nature 355: 374376
  • 39
    Teather, R.M., Collins, J.F., Donachie, W.D. (1974) Quantal behaviour of a diffusible factor which initiates septum formation at potential division sites in Escherichia coli. J Bacteriol 118: 407413
  • 40
    Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680
  • 41
    Vogel, U.S., Dixon, R.A., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick, E.M. , et al. (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335: 9093
  • 42
    Walker, J.E., Saraste, M., Runswick, M.J., Gay, N.J. (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945951
  • 43
    Wertman, K.F., Wyman, A.R., Botstein, D. (1986) Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene 49: 253262
  • 44
    Williams, S.M., Savery, N.J., Busby, S.J., Wing, H.J. (1997) Transcription activation at class I FNR-dependent promoters: identification of the activating surface of FNR and the corresponding contact site in the C-terminal domain of the RNA polymerase alpha subunit. Nucleic Acids Res 25: 40284034DOI: 10.1093/nar/25.20.4028
  • 45
    Zhou, T. & Rosen, B.P. (1999) Asp45 is a Mg2+ ligand in the ArsA ATPase. J Biol Chem 274: 1385413858
  • 46
    Zhou, T., Radaev, S., Rosen, B.P., Gatti, D.L. (2000) Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19: 48384845