Endonuclease cleavage of messenger RNA in Bacillus subtilis



A deletion derivative of the ermC gene was constructed that expresses a 254-nucleotide mRNA. The small size of this mRNA facilitated the detection of processing products that did not differ greatly in size from the full-length transcript. In the presence of erythromycin, which induces ribosome stalling near the 5 end of ermC mRNA, the 254-nucleotide mRNA was cleaved endonucleolytically at the site of ribosome stalling. Only the downstream product of this cleavage was detectable; the upstream product was apparently too unstable to be detected. The downstream cleavage product accumulated at times after rifampicin addition, suggesting that the stalled ribosome at the 5 end conferred stability to this RNA fragment. Neither Bs-RNase III nor RNase M5, the two known narrow-specificity endoribonucleases of Bacillus subtilis, was responsible for this cleavage. These results indicate the presence in B. subtilis of another specific endoribonuclease, which may be ribosome associated.