SEARCH

SEARCH BY CITATION

References

  • Birse, C.E., Irwin, M.Y., Fonzi, W.A., and Sypherd, P.S. (1993) Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61: 36483655.
  • Bockmühl, D.P., Krishnamurthy, S., Gerads, M., Sonnerborn, A., and Ernst, J.F. (2001) Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42: 12431257.
  • Braun, B.R., and Johnson, A.D. (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277: 105109.
  • Braun, B.R., Kadosh, D., and Johnson, A.D. (2001) NRG1, a repressor of filamentous growth in C. albicans, is down regulated during filament induction. EMBO J 20: 47534761.
  • Brown, A.J.P., and Gow, N.A. (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7: 334338.
  • Conlan, R.S., Gounalaki, N., Hatzis, P., and Tzamarias, D. (1999) The Tup–Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274: 205210.
  • Corner, B.E., and Magee, P.T. (1997) Candida pathogenicity: unraveling the treads of infection. Curr Biol 7: R691R694.
  • Courey, A.J., and Tjian, R. (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55: 887898.
  • Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., et al. (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66: 27132721.
  • Cutler, J.E. (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45: 187218.
  • D’Souza, C.A., and Heitman, J. (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25: 349364.
  • De Backer, M.D., Magee, P.T., and Pla, J. (2000) Recent developments in molecular genetics of Candida albicans. Annu Rev Microbiol 54: 463498.
  • DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680686.
  • Edmondson, D.G., Smith, M.M., and Roth, S.Y. (1996) Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 10: 12471259.
  • Ernst, J.F. (2000) Transcription factors in Candida albicans environmental control of morphogenesis. Microbiology 146: 17631774.
  • Feng, Q., Summers, E., Guo, B., and Fink, G. (1999) Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181: 63396346.
  • Fonzi, W.A., and Irwin, M.Y. (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717728.
  • Giusani, A.D., Winces, M., and Kumamoto, C.A. (2002) Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160: 17491753.
  • Goebl, M., and Yanagida, M. (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16: 173177.
  • Goldstein, A., and Lampen, J.O. (1975) Beta-d-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42: 504511.
  • Hill, J.E., Myers, A.M., Koerner, T.J., and Tzagoloff, A. (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163167.
  • Huh, W.-K., Kim, S.-T., Kim, H., Jeong, G., and Kang, S.-O. (2001) Deficiency of d-erythroascorbic acid attenuates hyphal growth and virulence of Candida albicans. Infect Immun 69: 39393946.
  • Hwang, C.-S., Rhie, G., Kim, S.-T., Kim, Y.-R., Huh, W.-K., Baek, Y.-U., and Kang, S.-O. (1999) Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochim Biophys Acta 1427: 245255.
  • Kadosh, D., and Johnson, A.D. (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21: 24962505.
  • Kaiser, C., Michaelis, S., and Mitchell, A. (1994) Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Keleher, C.A., Redd, M.J., Schultz, J., Carlson, M., and Johnson, A.D. (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68: 709719.
  • Khalaf, R.A., and Zitomer, R.S. (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157: 15031512.
  • Lee, K.L., Buckley, H.R., and Campbell, C.C. (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13: 148153.
  • Leuker, C.E., Sonneborn, A., Delbrück, S., and Ernst, J.F. (1997) Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192: 235240.
  • Liu, H., Köhler, J., and Fink, G.R. (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266: 17231744.
  • Lo, H.J., Köhler, J.R., DiDomencio, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997) Nonfilamentous C. albicans mutants are a virulent. Cell 90: 939949.
  • Márquez, J.A., Pascual-Ahuir, A., Proft, M., and Serrano, R. (1998) The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J 17: 25432553.
  • Mermod, N., O'Neil, E.A., Kelly, T.J., and Tjian, R. (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58: 741753.
  • Mukai, Y., Matsuo, E., Roth, S.Y., and Harashima, S. (1999) Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1 homolog. Mol Cell Biol 19: 84618468.
  • Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., et al. (2001a) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20: 47424752.
  • Murad, A.M., D’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., et al. (2001b) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42: 981993.
  • Odds, F.C. (1985) Morphogenesis in Candida albicans. Crit Rev Microbiol 12: 4593.
  • Odds, F.C., Webster, C.E., Mayuranathan, P., and Simmons, P.D. (1988) Candida concentrations in the vagina and their association with signs and symptoms of vaginal candidosis. J Med Vet Mycol 26: 277283.
  • Ozcan, S., Vallier, L.G., Flick, J.S., Carlson, M., and Johnston, M. (1997) Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13: 127137.
  • Papamichos-Chronakis, M., Petrakis, T., Ktistaki, E., Topalidou, I., and Tzamarias, D. (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at Gal1. Mol Cell 9: 12971305.
  • Pérez-Martín, J., Uría, J.A., and Johnson, A.D. (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 4: 25802592.
  • Proft, M., and Struhl, K. (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9: 13071317.
  • Santos, M.A., Keith, G., and Tuite, M.F. (1993) Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J 12: 607616.
  • Saporito-Irwin, S.M., Birse, C.E., Sypherd, P.S., and Fonzi, W.A. (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15: 601613.
  • Schultz, J., and Carlson, M. (1987) Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol Cell Biol 7: 36373645.
  • Sikorski, R.S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 1927.
  • Smith, R.L., and Johnson, A.D. (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25: 325330.
  • Staab, J.F., and Sundstrom, P. (1998) Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14: 681686.
  • Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997) Efg1, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic process in fungi. EMBO J 16: 19821991.
  • Sudbery, P.E. (2001) The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol Microbiol 41: 1931.
  • To.-E., A., Ueda, Y., Kakimoto, S.I., and Oshima, Y. (1973) Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J Bacteriol 113: 727738.
  • Treitel, M.A., and Carlson, M. (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92: 31323136.
  • Tzamarias, D., and Struhl, K. (1994) Functional dissection of the yeast Cyc8-Tup1 corepressor complex. Nature 369: 758761.
  • White, T.C. (1997) The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother 41: 14881494.
  • Zhang, L., and Guarente, L. (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136: 813817.