SEARCH

SEARCH BY CITATION

References

  • Van Aalten, D.M., DiRusso, C.C., and Knudsen, J. (2001) The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20: 20412050.
  • Anagnostopoulos, C., and Spizizen, J. (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81: 741746.
  • Aung-Hilbrich, L.M., Seidel, G., Wagner, A., and Hillen, W. (2002) Quantification of the influence of HPrSer46P on CcpA–cre interaction. J Mol Biol 319: 7785.
  • Aymerich, S., Gonzy-Treboul, G., and Steinmetz, M. (1986) 5′-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J Bacteriol 166: 993998.
  • Bekal-Si Ali, S., Divies, C., and Provost, H. (1999) Genetic organization of the citCDEF locus and identification of mae and clyR genes from Leuconostoc mesenteroides. J Bacteriol 181: 44114416.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248254.
  • Brennan, R.G. (1993) The winged-helix DNA-binding motif: another helix–turn–helix takeoff. Cell 74: 773776.
  • Chen, C.S., White, A., Love, J., Murphy, J.R., and Ringe, D. (2000) Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry 39: 1039710407.
  • Derré, I., Rapoport, G., and Msadek, T. (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31: 117131.
  • Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15: 10491053.
  • Deutscher, J., Galinier, A., and Martin-Verstraete, I. (2002) Carbohydrate uptake and metabolism. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. Sonenshein, A.L., Hoch, J.A., and Losick, R. (eds). Washington, DC: American Society for Microbiology Press, pp. 129150.
  • De Wulf, P. (1998) Presence of the ribulose mono-phosphate pathway in Bacillus subtilis. Microbiology 144: 596597.
  • Eymann, C., Homuth, G., Scharf, C., and Hecker, M. (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184: 25002520.
  • Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275: 1403114037.
  • Fortnagel, P. (1993) Glycolysis. In Bacillus subtilis and Other Gram-Positive Bacteria. Sonenshein, A.L., Hoch, J.A., and Losick, R. (eds). Washington, DC: American Society for Microbiology Press, pp. 171180.
  • Fouet, A., and Sonenshein, A.L. (1990) A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J Bacteriol 172: 835844.
  • Gajiwala, K.S., and Burley, S.K. (2000) Winged helix proteins. Curr Opin Struct Biol 10: 110116.
  • Guérout-Fleury, A.M., Frandsen, N., and Stragier, P. (1996) Plasmids for ectopic integration in Bacillus subtilis. Gene 180: 5761.
  • Hauser, N.C., Vingron, M., Scheideler, M., Krems, B., Hellmuth, K., Entian, K.D., and Hoheisel, J.D. (1998) Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14: 12091221.
  • Hederstedt, L. (1993) The Krebs citric acid cycle. In Bacillus subtilis and Other Gram-Positive Bacteria. Sonenshein, A.L., Hoch, J.A., and Losick, R. (eds). Washington, DC: American Society for Microbiology Press, pp. 181198.
  • Heldwein, E.E., and Brennan, R.G. (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409: 378382.
  • Henkin, T.M. (1996) The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett 135: 915.
  • Heuel, H., Shakeri-Garakani, A., Turgut, S., and Lengeler, J.W. (1998) Genes for d-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiology 144: 16311639.
  • Hueck, C.J., and Hillen, W. (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Mol Microbiol 15: 395401.
  • Huffman, J.L., and Brennan, R.G. (2002) Prokaryotic transcription regulators: more than just the helix–turn–helix motif. Curr Opin Struct Biol 12: 98106.
  • Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
  • Leyva-Vazquez, M.A., and Setlow, P. (1994) Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176: 39033910.
  • Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F.M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41: 409422.
  • Ludwig, H., Rebhan, N., Blencke, H.M., Merzbacher, M., and Stülke, J. (2002) Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45: 543553.
  • Mijakovic, I., Poncet, S., Galinier, A., Monedero, V., Fieulaine, S., Janin, J., et al. (2002) Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc Natl Acad Sci USA 99: 1344213447.
  • Miller, J.H. (1992) A Short Course in Bacterial Genetics. New York: Cold Spring Harbor Laboratory press, pp. 7274.
  • Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., and Fujita, Y. (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28: 12061210.
  • Moreno, M.S., Schneider, B.L., Maile, R.R., Weyler, W., and Saier, M.H., Jr (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39: 13661381.
  • Pohl, E., Holmes, R.K., and Hol, W.G. (1999) Crystal structure of a cobalt-activated diphtheria toxin repressor–DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 292: 653667.
  • Presecan-Siedel, E., Galinier, A., Longin, R., Deutscher, J., Danchin, A., Glaser, P., and Martin-Verstraete, I. (1999) Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 181: 68896897.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
  • Sangari, F.J., Aguero, J., and Garcia-Lobo, J.M. (2000) The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146: 487495.
  • Saxild, H.H., Andersen, L.N., and Hammer, K. (1996) Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 178: 424434.
  • Shin, B.S., Choi, S.K., and Park, S.H. (1999) Regulation of the Bacillus subtilis phosphotransacetylase gene. J Biochem (Tokyo) 126: 333339.
  • Sonenshein, A.L. (2002) The Krebs citric acid cycle. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. Sonenshein, A.L., Hoch, J.A., and Losick, R. (eds). Washington, DC: American Society for Microbiology Press, pp. 151162.
  • Steinmetz, M., and Richter, R. (1994) Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142: 7983.
  • Stülke, J., and Hillen, W. (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54: 849880.
  • Tobisch, S., Zuhlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181: 69967004.
  • Turinsky, A.J., Grundy, F.J., Kim, J.H., Chambliss, G.H., and Henkin, T.M. (1998) Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J Bacteriol 180: 59615967.
  • Turinsky, A.J., Moir-Blais, T.R., Grundy, F.J., and Henkin, T.M. (2000) Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J Bacteriol 182: 56115614.
  • Wohrl, B.M., Wehmeier, U.F., and Lengeler, J.W. (1990) Positive and negative regulation of expression of the l-sorbose (sor) operon by SorC in Klebsiella pneumoniae. Mol Gen Genet 224: 193200.
  • Yebra, M.J., Veyrat, A., Santos, M.A., and Perez-Martinez, G. (2000) Genetics of l-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182: 155163.
  • Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.M., Matsunaga, M., Yamaguchi, H., et al. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29: 683692.
  • Zeng, X., and Saxild, H.H. (1999) Identification and characterization of a DeoR-specific operator sequence essential for induction of dra-nupC-pdp operon expression in Bacillus subtilis. J Bacteriol 181: 17191727.
  • Zeng, X., Saxild, H.H., and Switzer, R.L. (2000) Purification and characterization of the DeoR repressor of Bacillus subtilis. J Bacteriol 182: 19161922.