SEARCH

SEARCH BY CITATION

References

  • André, B. (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11: 15751611.
  • Bandyopadhyay, G., Sajan, M.P., Kanoh, Y., Standaert, M.L., Burke, T.R.J., Quon, M.J., et al. (2000) Glucose activates mitogen-activated protein kinase (extracellular signal-regulated kinase) through proline-rich tyrosine kinase-2 and the Glut1 glucose transporter. J Biol Chem 275: 4081740826.
  • Béchet, J., Grenson, M., and Wiame, J.-M. (1970) Mutations affecting repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur J Biochem 12: 3139.
  • Beullens, M., Mbonyi, K., Geerts, L., Gladines, D., Detremerie, K., Jans, A.W.H., and Thevelein, J.M. (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172: 227231.
  • Bonneaud, N., Ozier-Kalogeropoulos, O., Li, G.Y., Labouesse, M., Minvielle-Sebastia, L., and Lacroute, F. (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7: 609615.
  • Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J.C., Hieter, P., and Boeke, J.D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115132.
  • Broach, J.R., and Deschenes, R.J. (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54: 79139.
  • Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., et al. (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17: 33263341.
  • Crauwels, M., Donaton, M.C.V., Pernambuco, M.B., Winderickx, J., De Winde, J.H., and Thevelein, J.M. (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143: 26272637.
  • Didion, T., Regenberg, B., Jorgensen, M.U., KiellandBrandt, M.C., and Andersen, H.A. (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27: 643650.
  • Durnez, P., Pernambuco, M.B., Oris, E., Arguelles, J.C., Mergelsberg, H., and Thevelein, J.M. (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional ras proteins. Yeast 10: 10491064.
  • Gietz, R.D., and Schiestl, R.H. (1991) Application of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253263.
  • Grenson, M. (1969) The utilization of exogenous pyrimidines and the recycling of uridine-5′-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem 11: 249260.
  • Grenson, M. (1983) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem 133: 135139.
  • Grenson, M. (1992) Amino acid transporters in yeast: structure, function and regulation. In Molecular Aspects of Transport Proteins. De Pont, J.J. (ed.). Amsterdam: Elsevier, pp. 219245.
  • Grenson, M., Mousset, M., Wiame, J.-M., and Béchet, J. (1966) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta 127: 325338.
  • Grenson, M., Hou, C., and Crabeel, M. (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103: 770777.
  • Griffioen, G., Mager, W.H., and Planta, R.J. (1994) Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae. FEMS Microbiol Lett 123: 137144.
  • Griffioen, G., Laan, R.J., Mager, W.H., and Planta, R.J. (1996) Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology 142: 22792287.
  • Hein, C., and André, B. (1997) A C-terminal di-leucine motif and nearby sequences are required for NH4 (+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol Microbiol 24: 607616.
  • Herrero, P., Martinez Campa, C., and Moreno, F. (1998) The hexokinase 2 protein participates in regulatory DNA–protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434: 7176.
  • Hilger, F., Simon, J.P., and Stalon, V. (1979) Yeast argininosuccinate synthetase. Purification, structural and kinetic properties. Eur J Biochem 94: 153163.
  • Hirimburegama, K., Durnez, P., Keleman, J., Oris, E., Vergauwen, R., Mergelsberg, H., and Thevelein, J.M. (1992) Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138: 20352043.
  • Hoffmann, W. (1985) Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J Biol Chem 260: 1183111837.
  • Hohmann, S., Winderickx, J., De Winde, J.H., Valckx, D., Cobbaert, P., Luyten, K., et al. (1999) Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of suc2. Microbiology 145: 703714.
  • Hu, L.A., and King, S.C. (1998) Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8–9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by GABP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem J 330: 771776.
  • Iraqui, I., Vissers, S., Bernard, F., DeCraene, J.O., Boles, E., Urrestarazu, A., and Andre, B. (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19: 9891001.
  • Jauniaux, J.C., and Grenson, M. (1990) Gap1, the general amino acid permease gene of Saccharomyces cerevisiae– nucleotide sequence, protein similarity with the other baker's yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190: 3944.
  • Klasson, H., Fink, G.R., and Ljungdahl, P.O. (1999) Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19: 54055416.
  • Kraakman, L., Lemaire, K., Ma, P., Teunissen, A.W.R.H., Donaton, M.C.V., Van Dijck, P., et al. (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32: 10021012.
  • Lalonde, S., Boles, E., Hellman, H., Barker, L., Patrick, J.W., Frommer, W.B., and Ward, J.M. (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11: 707726.
  • Lorenz, M.C., and Heitman, J. (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17: 12361247.
  • Marini, A.M., Vissers, S., Urrestarazu, A., and Andre, B. (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13: 34563463.
  • Marini, A.-M., Soussi-Boudekou, S., Vissers, S., and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17: 42824293.
  • Mazon, M.J., Behrens, M.M., Morgado, E., and Portillo, F. (1993) Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene. Eur J Biochem 213: 501506.
  • Mbonyi, K., Van Aelst, L., Argüelles, J.C., Jans, A.W.H., and Thevelein, J.M. (1990) Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol Cell Biol 10: 45184523.
  • Özcan, S., Dover, J., Rosenwald, A.G., Wölfl, S., and Johnston, M. (1996) Two glucose transporters in S. cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93: 1242812432.
  • Özcan, S., Dover, J., and Johnston, M. (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17: 25662573.
  • Pernambuco, M.B., Winderickx, J., Crauwels, M., Griffioen, G., Mager, W.H., and Thevelein, J.M. (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown an non-fermentable carbon sources. Microbiology 142: 17751782.
  • Regenberg, B., Holmberg, S., Olsen, L.D., and Kielland-Brandt, M.C. (1998) Dip5p mediates high-affinity and high-capacity transport of l-glutamate and l-aspartate in Saccharomyces cerevisiae. Curr Genet 33: 171177.
  • Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., and Winderickx, J. (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38: 348358.
  • Rolland, F., Winderickx, J., and Thevelein, J.M. (2001a) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26: 310317 .
  • Rolland, F., Wanke, V., Cauwenberg, L., Ma, P., Boles, E., Vanoni, M., et al. (2001b) The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1403: 113.
  • Ruis, H., and Schuller, C. (1995) Stress signaling in yeast. Bioessays 17: 959965.
  • Sheen, J., Zhou, L., and Jang, J.-C. (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2: 410418.
  • Stanbrough, M., and Magasanik, B. (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177: 94102.
  • Tamas, M.J., Rep, M., Thevelein, J.M., and Hohmann, S. (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472: 159165.
  • Tatchell, K. (1993) RAS genes in the budding yeast Saccharomyces cerevisiae. In Signal Transduction. Prokaryotic and Simple Eukaryotic Systems. Kurjan, J., and Taylor, B.J. (eds). San Diego: Academic Press, pp. 147188.
  • Thevelein, J.M. (1991) Fermentable sugars and intracellular acidification as specific activators of the Ras-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5: 13011307.
  • Thevelein, J.M. (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie van Leeuwenhoek J Microbiol 62: 109130.
  • Thevelein, J.M. (1994) Signal transduction in yeast. Yeast 10: 17531790.
  • Thevelein, J.M., and De Winde, J.H. (1999) Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 32: 10021012.
  • Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McBullen, B., et al. (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 13711377.
  • Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M. (1987b) Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277287.