SEARCH

SEARCH BY CITATION

Summary

In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5′-proximal cistrons from 3′[RIGHTWARDS ARROW]5′ exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.