SEARCH

SEARCH BY CITATION

References

  • 1
    Boockvar K.S., Granger D.L., Poston R.M., Maybodi M., Washington M.K., Hibbs J.B., Kurlander R.L. (1994) Nitric oxide produced during murine listeriosis is protective. Infection and Immunity 62, 1089 1100
  • 2
    Callow L.L., Mellors L.J., McGregor W. (1979) Reduction in virulence of Babesia bovis due to rapid passage in splenectomised calves. International Journal for Parasitology 9, 33 338
  • 3
    Chan J., Tanaka K., Carroll D., Flynn J., Bloom B.R. (1995) Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infection and Immunity 63, 736 740
  • 4
    Clark I.A., Rockett K.A., Cowden W.B. (1991) Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitology Today 7(8), 205 207
  • 5
    Eisenstein T.K., Huang D., Meissler J.J., Al-Ramadi B. (1994) Macrophage nitric oxide mediates immunosuppression in infectious inflammation. Immunobiology 191, 493 502
  • 6
    Gale K.R., Leatch G.L., Dimmock C.M., Wood P.R. (1997) Anaplasma marginale: Effect of the treatment of cattle with an interferon γ-neutralising monoclonal antibody or the nitric oxide synthetase inhibitor aminoguanidine on the course of infection . Parasite Immunology 19, 411 417
  • 7
    Gosselin D., Desanctis J., Boule M., Skamene E., Matouk C., Radzioch D. (1995) Role of tumour necrosis factor alpha in innate resistance to mouse pulmonary infection with Psuedomonas aeruginosa. Infection and Immunity 63, 3272 3278
  • 8
    Griffiths M.J.D., Messent M., MacAllister R.J., Evans T.W. (1993) Aminoguanidine selectively inhibits inducible nitric oxide synthase. British Journal of Pharmacology 110, 963 968
  • 9
    Johnson W.C., Cluff C.W., Goff W.L., Wyatt C.R. (1996) Reactive oxygen and nitrogen intermediates and products from polyamine degradation are babesiacidal in vitro. Annals of the New York Academy of Science 791, 136 147
  • 10
    Jorgensen W.K., Waldron S.J., McGrath J., Roman R.J., De Vos A.J., Williams K.E. (1992) Growth of Babesia bigemina parasites in suspension cultures for vaccine production. Parasitology Research 78, 423 426
  • 11
    Jorgensen W.K., Bock R.E., Kingston T.G., DeVos A.J., Waldron S.J. (1993) Assessment of tetracycline and Babesia culture supernatant as prophylactics for moderating reactions in cattle to live Babesia and Anaplasma vaccines. Australian Veterinary Journal 70, 35 36
  • 12
    Liew F.Y., Millot S., Parkinson C., Palmer R.M.J., Moncada S. (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. The Journal of Immunology 144, 4794 4797
  • 13
    Mabbott N.A., Sutherland I.A., Sternberg J.M. (1994) Trypanosoma brucei is protected from the cytostatic effects of nitric oxide under in-vivo conditions. Parasitology Research 80, 687 690
  • 14
    Mabbott N.A., Sutherland I.A., Sternberg J.M. (1995) Suppressor macrophages in Trypanosoma brucei infection: Nitric oxide is related to both suppressive activity and lifespan in vivo. Parasite Immunology 17, 143 150
  • 15
    Mahoney D.F. & Saal J.R. (1961) Bovine babesiosis: thick blood films for the detection of parasitaemia. Australian Veterinary Journal 37, 44 47
  • 16
    McCosker P.J. (1981) The global importance of babesiosis. In: Babesiosis M. Ristic & J.P. Kreier eds. Academic Press, New York, pp. 1 24
  • 17
    Petray P., Castanosvelez E., Grinstein S., Orn A., Rottenberg M.E. (1995) Role of nitric oxide in resistance and histopathology during experimental infection with Trypanosoma cruzi. Immunology Letters 47, 121 126
  • 18
    Pipano E., Markovics A., Kriegel Y., Frank M., Fish L. (1987) Use of long-acting oxytetracycline in the immunisation of cattle against Babesia bovis and B. bigemina. Research in Veterinary Science 43, 64 66
  • 19
    Rockett K.A., Awburn M.M., Rockett E.J., Cowden W.B., Clark I.A. (1994) Possible role for nitric oxide in malarial immunosuppression. Parasite Immunology 16, 243 249
  • 20
    Rosenblatt-Bin H., Klein A., Sredni B. (1996) Antibabesial effect of the immunomodulator AS101 in mice: role of increased production of nitric oxide. Parasite Immunology 18, 297 306
  • 21
    Scammell T.E., Elmquist J.K., Saper C.B. (1996) Inhibition of nitric oxide synthase produces hypothermia and depresses lipopolysaccharide fever. American Journal of Physiology 40, R333 R338
  • 22
    Sredni B., Caspi R.R., Klein A., Kalechman Y., Danziger Y., Ben Ya'akov M., Tamari T., Shalit F., Albeck M. (1987) A new immunostimulating-compound (AS101) with potential therapeutic application. Nature 330, 173 176
  • 23
    Sternberg J., Mabbott N., Sutherland I., Liew F.Y. (1994) Inhibition of nitric oxide synthesis leads to reduced parasitaemia in murine Trypanosoma infection. Infection and Immunity 62, 2135 2137
  • 24
    Stevenson M.M., Tam M.F., Wolf F., Sher A. (1995) IL-12 induced protection against blood stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. Journal of Immunology 155, 2545 2556
  • 25
    Tsukahara H., Nori C., Hiraoka M., Mayumi M., Okada T., Gejyo F. (1997) Nitric oxide modulation of erythropoiesis in rats. Blood 90, 473 474
  • 26
    Wolf D.J. & Lubeskie A. (1995) Aminoguanidine is an isoform-selective, mechanism-based inactivator of nitric oxide synthase. Archives of Biochemistry and Biophysics 316, 290 301
  • 27
    Wright I.G. & Kerr J.D. (1977) Hypotension in acute Babesia bovis (=B. argentina) infection of splenectomised calves . Journal of Comparative Pathology 87, 531 537
  • 28
    Wright I.G. (1979) The kallikrein-kinin system and its role in the hypotensive shock system of animals infected with the haemoprotozoan parasites Babesia, Plasmodium and Trypanosoma. General Pharmacology 87, 319 325
  • 29
    Wright I.G., Goodger B.V., Clark I.A. (1988) Immunopathophysiology of Babesia bovis and Plasmodium falciparum infections. Parasitology Today 4, (8) 214 218