• 1
    Taylor MJ & Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitol Today 1999; 15: 437442.DOI: 10.1016/s0169-4758(99)01533-1
  • 2
    Kozek WJ. Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 1977; 63: 9921000.
  • 3
    Bandi C, Anderson TJ, Genchi C et al. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc (London) B Biol Sci 1998; 265: 24072413.
  • 4
    Taylor MJ, Bilo K, Cross HF et al. 16S rDNA phylogeny and ultrastructural characterization of Wolbachia intracellular bacteria of the filarial nematodes Brugia malayi, B. pahangi, and Wuchereria bancrofti. Exp Parasitol 1999; 91: 356361.DOI: 10.1006/expr.1998.4383
  • 5
    Taylor MJ, Bandi C, Hoerauf AM et al. Wolbachia bacteria of filarial nematodes: a target for control? Parasitol Today 2000; 16: 179180.DOI: 10.1016/s0169-4758(00)01661-6
  • 6
    Vincent AL, Vickery AC, Lotz MJ et al. The lymphatic pathology of Brugia pahangi in nude (athymic) and thymic mice C3H/HeN. J Parasitol 1984; 70: 4856.
  • 7
    Nelson FK, Greiner DL, Shultz LD et al. The immunodeficient scid mouse as a model for human lymphatic filariasis. J Exp Med 1991; 173: 659663.
  • 8
    Taylor MJ, Cross HF, Bilo K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med 2000b; 191: 14291436.
  • 9
    Brade L, Opal SM, Vogel SN, Morrison DC, eds. Endotoxin in Health and Disease. New York: Marcel Dekker; 1999.
  • 10
    Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol 2000; 3: 2328.DOI: 10.1016/s1369-5274(99)00046-6
  • 11
    Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000; 12: 2026.DOI: 10.1016/s0952-7915(99)00046-1
  • 12
    Qureshi ST, Gros P, Malo D. Host resistance to infection: genetic control of lipopolysaccharide responsiveness by TOLL-like receptor genes. Trends Genet 1999; 15: 291294.DOI: 10.1016/s0168-9525(99)01782-5
  • 13
    Karima R, Matsumoto S, Higashi H et al. The molecular pathogenesis of endotoxic shock and organ failure. Mol Med Today 1999; 5: 123132.DOI: 10.1016/s1357-4310(98)01430-0
  • 14
    Ulevitch RJ & Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 1999; 11: 1922.DOI: 10.1016/s0952-7915(99)80004-1
  • 15
    Kopp EB & Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol 1999; 11: 1318.DOI: 10.1016/s0952-7915(99)80003-x
  • 16
    Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000; 12: 1319.DOI: 10.1016/s0952-7915(99)00045-x
  • 17
    Brattig NW, Rathjens U, Ernst M et al. Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and anti-inflammatory responses of human monocytes. Microbes Infect 2000; 2: 11471157.DOI: 10.1016/s1286-4579(00)01269-7
  • 18
    Zahner H. Induction and prevention of shock-like lethal side effects after microfilaricidal treatment in filariae infected rodents. Trop Med Parasitol 1995; 46: 221229.
  • 19
    Kitoh K, Watoh K, Kitagawa H et al. Blood coagulopathy in dogs with shock induced by injection of heartworm extract. Am J Vet Res 1994; 55: 15421547.
  • 20
    Kitoh K, Watoh K, Chaya K et al. Clinical, hematologic, and biochemical findings in dogs after induction of shock by injection of heartworm extract. Am J for Vet Res 1994; 55: 15351541.
  • 21
    Kitoh K, Kitagawa H, Sasaki Y. Pathologic findings in dogs with shock induced by intravenous administration of heartworm extract. Am J for Vet Res 1998; 59: 14171422.
  • 22
    Zheng HJ, Tao ZH, Cheng WF et al. Efficacy of ivermectin for control of microfilaremia recurring after treatment with diethylcarbamazine. II. Immunologic changes following treatment. Am J Trop Med 1991; 45: 175181.
  • 23
    Yazdanbakhsh M, Duym L, Aarden L et al. Serum interleukin-6 levels and adverse reactions to diethylcarbamazine in lymphatic filariasis. J Infect Dis 1992; 166: 453454.
  • 24
    Turner PF, Rockett KA, Ottesen EA et al. Interleukin-6 and tumor necrosis factor in the pathogenesis of adverse reactions after treatment of lymphatic filariasis and onchocerciasis. J Infect Dis 1994; 169: 10711075.
  • 25
    Winkler S, El Menyawi I, Linnau KF et al. Short report: total serum levels of the nitric oxide derivatives nitrite/nitrate during microfilarial clearance in human filarial disease. Am J Trop Med Hygiene 1998; 59: 523525.
  • 26
    Haarbrink M, Terhell AJ, Abadi GK et al. Inflammatory cytokines following diethylcarbamazine (DEC) treatment of different clinical groups in lymphatic filariasis. Trans Royal Soc Trop Med Hygiene 1999a; 93: 665672.
  • 27
    Haarbrink M, Terhell AJ, Abadi GK et al. Adverse reactions following diethylcarbamazine (DEC) intake in ‘endemic normals’, microfilaraemics and elephantiasis patients. Trans Royal Soc Trop Med Hygiene 1999b; 93: 9196.
  • 28
    Haarbrink M, Abadi GK, Buurman WA et al. Strong association of IL-6 and LBP with severity of adverse reactions following diethylcarbamazine (DEC) treatment of microfilaraemic patients. J Infect Dis 2000; 182: 564569.DOI: 10.1086/315735
  • 29
    Dreyer G, Medeiros Z, Netto MJ et al. Acute attacks in the extremities of persons living in an area endemic for bancroftian filariasis: differentiation of two syndromes. Trans Royal Soc Trop Med Hygiene 1999; 93: 413417.
  • 30
    Das BK, Sahoo PK, Ravindran B. A role for tumour necrosis factor-alpha in acute lymphatic filariasis. Parasite Immunol 1996; 18: 421424.
  • 31
    Pani SP, Yuvaraj J, Vanamail P et al. Episodic adenolymphangitis and lymphoedema in patients with bancroftian filariasis. Trans Royal Soc Trop Med Hygiene 1995; 89: 7274.
  • 32
    Dreyer G & Piessens WF. In: Lymphatic Filariasis, ed. NutmanTB. London: Imperial College Press; 2000: 245264.
  • 33
    Olszewski WL, Jamal S, Lukomska B et al. Immune proteins in peripheral tissue fluid-lymph in patients with filarial lymphedema of the lower limbs. Lymphology 1992; 25: 166171.
  • 34
    Rao UR, Sutton ET, Zometa CS et al. Effect of Brugia malayi infections on endothelial cells: a morphological study. J Submicrosc Cytol Pathol 1996a; 28: 227241.
  • 35
    Randow F, Syrbe U, Meisel C et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 1995; 181: 18871892.
  • 36
    Ziegler-Heitbrock HW. Molecular mechanism in tolerance to lipopolysaccharide. Inflammation 1995; 45: 1326.
  • 37
    Zeisberger E & Roth J. Tolerance to pyrogens. Ann NY Acad Sci 1998; 856: 116131.
  • 38
    Nomura F, Akashi S, Sakao Y et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000; 164: 34763479.
  • 39
    Medvedev AE, Kopydlowski KM, Vogel SN. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 2000; 164: 55645574.
  • 40
    Lush CW, Cepinskas G, Kvietys PR. LPS tolerance in human endothelial cells: reduced PMN adhesion, E-selectin expression, and NF-kappaB mobilization. Am J Physiol Heart Circ 2000; 278: H853H861.
  • 41
    Marie C, Muret J, Fitting C et al. Reduced ex vivo interleukin-8 production by neutrophils in septic and nonseptic systemic inflammatory response syndrome. Blood 1998; 91: 34393446.
  • 42
    Olszewski WL, Jamal S, Manokaran G et al. Bacteriological studies of blood, tissue fluid, lymph and lymph nodes in patients with acute dermatolymphangioadenitis (DLA) in course of ‘filarial’ lymphedema. Acta Tropica 1999; 73: 217224.
  • 43
    Tobias PS, Tapping RI, Gegner JA. Endotoxin interactions with lipopolysaccharide-responsive cells. Clin Infect Dis 1999; 28: 476481.
  • 44
    Lin Y, Lee H, Berg AH et al. LPS Activated TLR-4 receptor induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biochem 2000; 275: 2425524263.
  • 45
    Bannerman DD & Goldblum SE. Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 1999; 79: 11811199.
  • 46
    Pugin J, Schurer-Maly CC, Leturcq D et al. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 1993; 90: 27442748.
  • 47
    Zhang FX, Kirschning CJ, Mancinelli R et al. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999; 274: 76117614.DOI: 10.1074/jbc.274.12.7611
  • 48
    Faure E, Equils O, Sieling PA et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275: 1105811063.DOI: 10.1074/jbc.275.15.11058
  • 49
    Olofsson B, Jeltsch M, Eriksson U et al. Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol 1999; 10: 528535.DOI: 10.1016/s0958-1669(99)00024-5
  • 50
    Jeltsch M, Kaipainen A, Joukov V et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 14231425.DOI: 10.1126/science.276.5317.1423
  • 51
    Ristimaki A, Narko K, Enholm B et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biochem 1998; 273: 84138418.
  • 52
    Leak LV, Cadet JL, Griffin CP et al. Nitric oxide production by lymphatic endothelial cells in vitro. Biochem Biophysics Res Comms 1995; 217: 96105.
  • 53
    Rao UR, Zometa CS, Vickery AC et al. Effect of Brugia malayi on the growth and proliferation of endothelial cells in vitro. J Parasitol 1996; 82: 550556.
  • 54
    Rao UR, Vickery AC, Kwa BH et al. Regulatory cytokines in the lymphatic pathology of athymic mice infected with Brugia malayi. Int J Parasitol 1996b; 26: 561565.DOI: 10.1016/0020-7519(96)00036-7
  • 55
    Oliveira SH, Fonseca SG, Romao PR et al. Microbicidal activity of eosinophils is associated with activation the arginine-NO pathway. Parasite Immunol 1998; 20: 405412.
  • 56
    Colotta F, Re F, Polentarutti N et al. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992; 80: 20122020.
  • 57
    Brattig NW, Büttner DW, Hoerauf A. Neutrophil accumulation around Onchocerca worms and chemotaxis of neutrophils are dependent on Wolbachia endobacteria. Microbes Infect 2001; 3: 439446.DOI: 10.1016/s1286-4579(01)01399-5
  • 58
    Rubio de Kromer MT, Kromer M, Luersen K et al. Detection of a chemotactic factor for neutrophils in extracts of female Onchocerca volvulus. Acta Tropica 1998; 71: 4556.
  • 59
    Njoo FL, Hack CE, Oosting J et al. Neutrophil activation in ivermectin-treated onchocerciasis patients. Clin Exp Immunol 1993; 94: 330333.
  • 60
    Wildenburg G, Darge K, Knab J et al. Lymph nodes of onchocerciasis patients after treatment with ivermectin: reaction of eosinophil granulocytes and their cationic granule proteins. Trop Med Parasitol 1994; 45: 8796.
  • 61
    Castro-Faria-Neto HC, Penido CM, Larangeira AP et al. A role for lymphocytes and cytokines on the eosinophil migration induced by LPS. Memorias Do Instituto Oswaldo Cruz 1997; 92 (Suppl. 2): 197200.
  • 62
    Moller G. Receptors for innate pathogen defence in insects are normal activation receptors for specific immune responses in mammals. Scand J Immunol 1999; 50: 341347.DOI: 10.1046/j.1365-3083.1999.00605.x
  • 63
    Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med 1997; 185: 20892094.
  • 64
    Castro A, Bemer V, Nobrega A et al. Administration to mouse of endotoxin from gram-negative bacteria leads to activation and apoptosis of T lymphocytes. Eur J Immunol 1998; 28: 488495.DOI: 10.1002/(sici)1521-4141(199802)28:02<488::aid-immu488>;2-i
  • 65
    Lauw FN, Ten Hove T, Dekkers PE et al. Reduced Th1, but not Th2, cytokine production by lymphocytes after in vivo exposure of healthy subjects to endotoxin. Infect Immun 2000; 68: 10141018.
  • 66
    Clark GJ, Angel N, Kato M et al. The role of dendritic cells in the innate immune system. Microbes Infect 2000; 2: 257272.DOI: 10.1016/s1286-4579(00)00302-6
  • 67
    Chu RS, Askew D, Noss EH et al. CpG oligodeoxynucleotides down-regulate macrophage class II MHC antigen processing. J Immunol 1999; 163: 11881194.
  • 68
    Skok J, Poudrier J, Gray D. Dendritic cell-derived IL-12 promotes B cell induction of Th2 differentiation: a feedback regulation of Th1 development. J Immunol 1999; 163: 42844291.
  • 69
    Medzhitov R & Janeway CA. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998; 10: 351353.DOI: 10.1006/smim.1998.0136
  • 70
    Bazzocchi C, Ceciliani F, McCall JW et al. Antigenic role of the endosymbionts of filarial nematodes: IgG response against the Wolbachia surface protein in cats infected with Dirofilaria immitis. Proc R Soc Lond B Biol Sci 2000; 267: 25112516.DOI: 10.1098/rspb.2000.1313
  • 71
    Maizels RM, Allen JE, Yazdanbakhsh M. In: Lymphatic Filariasis, ed. NutmanTB. London: Imperial College Press; 2000: 217243
  • 72
    Ravichandran M, Mahanty S, Kumaraswami V et al. Elevated IL-10 mRNA expression and downregulation of Th1-type cytokines in microfilaraemic individuals with Wuchereria bancrofti infection. Parasite Immunol 1997; 19: 6977.
  • 73
    Mahanty S & Nutman TB. Immunoregulation in human lymphatic filariasis: the role of interleukin 10. Parasite Immunol 1995; 17: 385392.
  • 74
    Osborne J & Devaney E. Interleukin-10 and antigen-presenting cells actively suppress Th1 cells in BALB/c mice infected with the filarial parasite Brugia pahangi. Infect Immun 1999; 67: 15991605.
  • 75
    Doetze A, Satoguina J, Burchard G et al. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 2000; 12: 623630.DOI: 10.1093/intimm/12.5.623
  • 76
    Kozek WJ & Marroquin HF. Intracytoplasmic bacteria in Onchocerca volvulus. Am J Trop Med Hygiene 1977; 26: 663678.
  • 77
    Whartman WB. Filariasis in American armed forces in World War II. Medicine 1944; 26: 333394.
  • 78
    Moore TA, Reynolds JC, Kenney RT et al. Diethylcarbamazine-induced reversal of early lymphatic dysfunction in a patient with bancroftian filariasis: assessment with use of lymphoscintigraphy. Clin Infect Dis 1996; 23: 10071011.
  • 79
    Dennis VA, Lasater BL, Blanchard JL et al. Histopathological, lymphoscintigraphical, and immunological changes in the inguinal lymph nodes of rhesus monkeys during the early course of infection with Brugia malayi. Exp Parasitol 1998; 89: 143152.DOI: 10.1006/expr.1998.4300
  • 80
    De Galdiero M, L'Ero GC, Marcatili A. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun 1997; 65: 699707.
  • 81
    Heumann D, Glauser MP, Calandra T. Molecular basis of host–pathogen interaction in septic shock. Curr Opin Microbiol 1998; 1: 4955.
  • 82
    Krieg AM. The role of CpG motifs in innate immunity. Curr Opin Immunol 2000; 12: 3543.DOI: 10.1016/s0952-7915(99)00048-5
  • 83
    Bukau B & Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92: 351366.
  • 84
    Kaufmann SH, Schoel B, Van Embden JD et al. Heat-shock protein 60: implications for pathogenesis of and protection against bacterial infections. Immunol Rev 1991; 121: 6790.
  • 85
    Gaston JS. Heat shock proteins as potential targets in the therapy of inflammatory arthritis. Biotherapy 1998; 10: 197203.
  • 86
    Chen W, Syldath U, Bellmann K et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999; 162: 32123219.
  • 87
    Kol A, Bourcier T, Lichtman AH et al. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 1999; 103: 571577.
  • 88
    Kol A, Lichtman AH, Finberg RW et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000; 164: 1317.
  • 89
    Ohashi K, Burkart V, Flohe S et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000; 164: 558561.
  • 90
    Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546549.
  • 91
    Hoerauf A, Volkmann L, Hamelmann C et al. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 2000; 355: 12421243.DOI: 10.1016/s0140-6736(00)02095-x
  • 92
    Langworthy N, Renz A, Meckenstedt U et al. Macrofilaricidal activity of tetracycline against the filarial nematode, Onchocerca ochengi: elimination of Wolbachia preceeds worm death and suggests a dependent relationship. Proc Royal Soc (London) Series B 2000; 267: 10631069.