• 1
    Alvey N., Galwey W., Lane P. (1982) An Introduction to Genstat. Academic Press, London.
  • 2
    Barber S.A., Walker J.M., Vasey E.H. (1963) Mechanisms for the movement of plant nutrients from soil and fertilizer to the plant root. Journal of Agricultural Food Chemistry 11, 204 207.
  • 3
    Bieleski R.L. & Läuchli A. (1992) Phosphate uptake, efflux and deficiency in the water fern, Azolla. Plant, Cell and Environment. 15, 665673.
  • 4
    Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248254.
  • 5
    Clarkson D.T. & Scattergood C.B. (1982) Growth and phosphate transport in barley and tomato plants during the development of, and recovery from, phosphate-stress. Journal of Experimental Botany 33, 865875.
  • 6
    Cogliatti D.H. & Clarkson D.T. (1983) Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiologia Plantarum 58, 287294.
  • 7
    Dagley S. (1974) Citrate: UV spectrophotometric determination. In Methods of Enzymatic Analysis, Vol. 3 (ed. H.U. Bergmeyer), pp. 1562–1565. Academic Press, New York.
  • 8
    Delhaize E., Ryan P.R., Randall P.J. (1993) Aluminium tolerance in wheat (Triticum aestivum L) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiology 103, 695702.
  • 9
    Dinkelaker B., Hengeler C., Marschner H. (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108, 183200.
  • 10
    Dinkelaker B., Römheld V., Marschner H. (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell & Environment 12, 285292.
  • 11
    Dowling E.J. & Bouma D. (1985) Field evaluation of a leaf test for assessment of the phosphorus status of subterranean clover and for prediction of its response to phosphorus. Australian Journal of Experimental Agriculture 25, 331336.
  • 12
    Dunlop J. & Gardiner S. (1993) Phosphate uptake, proton extrusion and membrane electropotentials of phosphorus-deficient Trifolium repens L. Journal of Experimental Botany 44, 18011808.
  • 13
    Dunlop J. & Hay M.J.M. (1985) Electrophysical evidence for the permeability of white clover stolons to nutrient ions. Plant and Soil 84, 153165.
  • 14
    Ernst M., Römheld V., Marschner H. (1989) Estimation of phosphorus uptake capacity zones of the primary root of soil-grown maize (Zea mays L.). Zeitschrift für Pflanzenernährung und Bodenkunde 152, 2125.
  • 15
    Fox T.R., Comerford N.B., McFee W. (1990) Phosphorus and aluminium release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal 54, 17631767.
  • 16
    Gardner W.K., Barber D.A., Parberry D.G. (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant and Soil 70, 107124.
  • 17
    Gardner W.K., Parbery D.G., Barber D.A. (1982a) The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant and Soil 68, 1932.
  • 18
    Gardner W.K., Parbery D.G., Barber D.A. (1982b) The acquisition of phosphorus by Lupinus albus L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface. Plant and Soil 68, 3341.
  • 19
    Gerke J., Römer W., Jungk A. (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L., effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol. Zeitschrift für Pflanzenernährung und Bodenkunde 157, 289294.
  • 20
    Hatch M.D. & Oliver I.R. (1978) Activation and inactivation of phosphoenolpyruvate carboxylase in leaf extracts of C4 species. Australian Journal of Plant Physiology 5, 571580.
  • 21
    Hoffland E., Findenegg G.R., Nelemans J.A. (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant and Soil 113, 161165.
  • 22
    Johnson J.F., Allan D.L., Vance C.P. (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiology 104, 657665.
  • 23
    Johnson J.F., Allan D.L., Vance C.P., Weiblen G. (1996a) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiology 112, 1930.
  • 24
    Johnson J.F., Vance C.P., Allan D.L. (1996b) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiology 112, 3141.
  • 25
    Lee R.B., Ratcliff R.G., Southon T.E. (1990) 31P NMR measurements of the cytoplasmic and vacuolar Pi content of mature maize roots: relationship with phosphorus status and phosphate fluxes. Journal of Experimental Botany 41, 10631078.
  • 26
    Lefebvre D.D. & Glass A.D.M. (1982) Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction of influx with provision of orthophosphate. Physiologia Plantarum 54, 199206.
  • 27
    Leggewie G., Willmitzer L., Riesmeier J.W. (1997) Two c-DNAs from potato are able to complement a phosphate uptake-deficient mutant: identification of phosphate transporters from higher plants. The Plant Cell 9, 381392.
  • 28
    Louis I., Racette S., Torrey J.G. (1990) Occurrence of cluster roots on Myrica cerifera L. (Myricaceae) in water culture in relation to phosphorus nutrition. New Phytologist 115, 311 317.
  • 29
    Macnicol P.K. & Jacobsen J.V. (1992) Endosperm acidification and related metabolic changes in the developing barley grain. Plant Physiology 98, 10981104.
  • 30
    Malajczuk N. & Bowen G.D. (1974) Proteoid roots are microbially induced. Nature 251, 316317.
  • 31
    Marschner H., Römheld V., Cakmak I. (1987) Root-induced changes of nutrient availability in the rhizosphere. Journal of Plant Nutrition 10, 11751184.
  • 32
    Marschner H., Römheld V., Horst W.J., Martin P. (1986) Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung und Bodenkunde 149, 441456.
  • 33
    Mengel K. & Kirkby E.A. (1982) Principles of Plant Nutrition, 3rd edn, pp. 66–67. International Potash Institute, Worblaufen-Bern.
  • 34
    Mitsukawa N., Okumura S., Shirano Y., Sato S., Kato T., Harashima S., Shibata D. (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Science, USA 94, 70987102.
  • 35
    Moraghan J.T. (1993) Phosphorus nutrition of white lupin grown on a calciquoll. Communications in Soil Science and Plant Analysis 24, 10771086.
  • 36
    Muchhal U.S., Pardo J.M., Raghothama K.G. (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Science, USA 93, 10519 10523.
  • 37
    Norrish K. & Hutton J.T. (1977) Plant analysis by X-ray spectroscopy. I. Low atomic number elements, sodium to calcium. X-ray Spectrometry 6, 611.
  • 38
    Purnell H.M. (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Australian Journal of Botany 8, 3850.
  • 39
    Smith F.W., Ealing P.M., Dong B., Delhaize E. (1997) The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal 11, 8392.
  • 40
    Trinick M.J. (1977) Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytologist 78, 297304.
  • 41
    Ullrich-Eberius C.I., Novacky A., Van Bel A.J.E. (1984) Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161, 4652.
  • 42
    Vorster P.W. & Jooste J.H. (1986a) Potassium and phosphate absorption by excised ordinary and proteoid roots of the Proteaceae. South African Journal of Botany 52, 276281.
  • 43
    Vorster P.W. & Jooste J.H. (1986b) Translocation of potassium and phosphate from ordinary and proteoid roots to shoots in the Proteaceae. South African Journal of Botany 52, 281285.