Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L.

Authors


D. P. Wright Fax: 0114 2760159; e-mail: d.p.wright@sheffield.ac.uk

Abstract

A comparative analysis of daily carbon (C) budgets and aspects of the C physiology of clover (Trifolium repens L.) colonized by vesicular-arbuscular (VA) mycorrhizal fungi was carried out over a 70 d growth period under conditions designed to ensure that shoots of mycorrhizal (M) and non-mycorrhizal (NM) plants were of similar nutrient status. C budgets did not differ on day 24 but by day 42 M plants had a significantly higher rate of photosynthesis than their NM counterparts when expressed on a whole shoot basis or unit dry weight basis. As both sets of plants were of the same size it was concluded that this greater C gain was the result of increased sink strength provided by the mycorrhizal fungus. By day 53 M plants had become larger than their uncolonized counterparts and a sink-induced stimulation in the rate of photosynthesis was no longer apparent. M plants had higher root sucrose, glucose and fructose pools from day 24. Analyses suggested that these sugars were utilized for trehalose and lipid synthesis, for the production of the large extramatrical mycelium and for the support of the respiratory demands of the M root system. Increased C allocation to roots of M plants was associated with a stimulation of the activities of cell wall and cytoplasmic invertases and of sucrose synthase in roots colonized by VA fungi. Such increases in enzyme activity may provide the mechanism enabling increased partitioning of carbohydrate both to the M root system and the fungal symbiont.

Ancillary