SEARCH

SEARCH BY CITATION

References

  • 1
    Barnes C., Jacobson G., Smith G. (1992) The origin of high-nitrate ground waters in the Australian arid zone. Journal of Hydrology 137, 181197.
  • 2
    Beadle N.C. (1964) Nitrogen economy in arid and semi-arid plant communities. Part III. The symbiotic nitrogen-fixing organisms. Proceedings of the Linnean Society of New South Wales 89, 273286.
  • 3
    Beard J.S. (1990) Plant life of Western Australia. Kenthurst, Kangaroo Press.
  • 4
    Bremner J.M. & Hauck R.D. (1982) Advances in methodology for research on nitrogen transformations in soils. In Nitrogen in Agricultural Soils (ed. F.J. Stevenson), pp. 467–502. ASA, CSSA, SSSA, Madison.
  • 5
    Brooks J.R., Flanagan L.B., Buchmann N., Ehleringer J.R. (1997) Carbon isotope composition of boreal plants: functional groupings of life forms. Oecologia 110, 301311.
  • 6
    Chappell D.J. & Slaytor M. (1986) Nitrogen fixation in the higher termite, Nasutitermes walkeri. In Eight Australian Nitrogen Fixation Conference in Adelaide (eds W. Wallace & S. Smith), pp. 119–120. Australian Institute of Agricultural Science, Adelaide, Australia.
  • 7
    Collins N.M. (1981) The utilization of nitrogen resources by termites (Isoptera). In Nitrogen as an Ecological Factor (eds J. A. Lee, S. McNeill & I. H. Rorison), pp. 381– 412. Blackwell Scientific Publications, Oxford.
  • 8
    Ehleringer J.R. (1988) Carbon isotope ratios and physiological processes in aridland plants. In Stable Isotopes in Ecological Research (eds P.W. Rundel, J.R. Ehleringer & K. Nagy), pp. 41–54. Springer-Verlag, New York.
  • 9
    Ehleringer J.R., Cerling T.E., Helliker B.R. (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285299.
  • 10
    Ehleringer J.R. & Cooper T.A. (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76, 562566.
  • 11
    Erskine P.D., Stewart G.R., Schmidt S., Turnbull M.H., Unkovich M.J., Pate J.S. (1996) Water availability – a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant, Cell & Environment 19, 11491159.
  • 12
    Farquhar G.D. (1980) Carbon isotope discrimination by plants: effects of carbon dioxide concentration and temperature via the ratio of tercellular and atmospheric CO2 concentrations. In Carbon Dioxide and Climate: Australian Research (ed. G.I. Pearman), pp. 105–110. Australian Academy of Science, Canberra.
  • 13
    Farquhar G.D. & Richards R.A. (1984) Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11, 539552.
  • 14
    Graetz R. & Tongway D. (1986) Influence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrubland. Australian Journal of Ecology 11, 347360.
  • 15
    Handley L.L. & Scrimgeour C.M. (1997) Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Advances in Ecological Research 27, 133212.
  • 16
    Henderson S., Hattersley P., Von Cammerer S., Osmond B. (1995) Are C4 pathway plants threatened by global climatic change? In Ecophysiology of Photosynthesis (eds E.D. Schulze & M.M. Caldwell), pp. 529–549. Springer-Verlag, Berlin.
  • 17
    Herbel M.J. & Spalding R.F. (1993) Vadose zone fertilizer derived nitrate and delta 15N extracts. Ground Water 31, 376382.
  • 18
    Herman D.J. & Rundel P.W. (1989) Nitrogen isotope fractionation in burned and unburned chaparral soils. Soil Science Society of America Journal 53, 12291236.
  • 19
    Hodgins I.W. & Rogers R.W. (1997) Correlations of stocking with the cryptogamic soil crust of a semi-arid rangeland in southwest Queensland. Australian Journal of Ecology 22, 425431.
  • 20
    Hogberg P. (1997) Tansley Review no. 95; 15N natural abundance in soil-plant systems. New Phytologist 137, 179203.
  • 21
    Johnson R.W. & Burrows W.H. (1981) Acacia open-forests, woodlands and shrublands. In Australian Vegetation (ed. R. H. Groves), pp. 198–226. Cambridge University Press, Cambridge.
  • 22
    Keeney D.R. & Nelson D.W. (1982) Nitrogen – inorganic forms. In Methods of Soil Analysis (ed. A.L. Page), pp. 643–698. 2, Chemical and microbial properties –Agronomy Monograph No 9. Madison: ASA-SSSA.
  • 23
    Lindau C.W. & Spalding R.F. (1984) Major procedural discrepancies in soil extracted nitrate levels and nitrogen isotopic values. Ground Water 22, 271278.
  • 24
    McCullough H. (1967) The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chemica Acta 17, 297304.
  • 25
    Murray L. & Siebert B. (1962) Nitrate in underground waters of central Australia. The Australian Journal of Science 25, 2223.
  • 26
    Nelder V.J. (1986) Vegetation of the mulga lands. In The Mulga Lands (ed. P.S. Sattler), pp. 20–26. Royal Society of Queensland, Brisbane.
  • 27
    Pate J.S. & Layzell D.B. (1990) Energetics and costs of nitrogen assimilation. In The Biochemistry of Plants (eds E. Conn & P. Stumpf), pp. 1– 42. Academic Press, New York.
  • 28
    Pate J.S., Unkovich M.J., Armstrong E.L., Sanford P. (1994) Selection of reference plants for 15N natural abundance assessment of N2 fixation by crop and pasture legumes in southwest Australia. Australian Journal of Agricultural Research 45, 133147.
  • 29
    Prestwich G.D. & Bentley B.L. (1981) Nitrogen fixation in intact colonies of the termite Nasutitermes corniger. Oecologia 49, 249251.
  • 30
    Rogers R., Lange R., Nicholas D. (1966) Nitrogen fixation by lichens of arid soil crusts. Nature 209, 9697.
  • 31
    Shearer G. & Kohl D.H. (1986) N2 fixation in field settings: Estimates based on natural 15N abundance. Australian Journal of Plant Physiology 13, 699756.
  • 32
    Sloan C.H. & Sublett B.J. (1966) Colorimetric method of analysis for nitrates in tobacco. Tobacco Science 10, 121125.
  • 33
    Smith G.D., Lynch R.M., Jacobson G., Barnes C.J. (1990) Cyanobacterial nitrogen fixation in arid soils of central Australia. FEMS Microbiolgy Ecology 74, 7990.
  • 34
    Stanford G. (1982) Assessment of soil nitrogen availability. In Nitrogen in Agricultural Soils (ed. F.J. Stevenson), pp. 651–688. ASA, CSSA, SSSA, Madison.
  • 35
    Stewart G.R., Pate J.S., Unkovich M.J. (1993) Characteristics of organic nitrogen assimilation of plants in fire-prone Mediterranean-type vegetation. Plant, Cell & Environment 16, 351363.
  • 36
    Tchan Y.T. & Beadle N.C. (1955) Nitrogen economy in semi-arid plant communities. Part II. The non-symbiotic nitrogen fixing organisms. Journal of Linnean Society of New South Wales 80, 97104.
  • 37
    Unkovich M.J., Pate J.S., Sanford P. (1993) Preparation of plant samples for high precision nitrogen isotope ratio analysis. Communications in Soil Science and Plant Analysis 24, 20932106.
  • 38
    Virginia R., Jarrell W., Rundel P., Shearer G., Kohl D. (1988) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In Stable Isotopes in Ecological Research (eds P. Rundel J. Ehleringer & K. Nagy), pp. 375–394. Springer-Verlag, Berlin.
  • 39
    Watson J., Lendon C., Low B. (1973) Termites in mulga lands. Tropical Grasslands 7, 121126.
  • 40
    Wheatley R.E., MacDonald R., Smith A.M. (1989) Extraction of nitrogen from soils. Biology and Fertility of Soils 8, 189190.
  • 41
    Yoneyama T. (1996) Characterization of Natural 15N Abundance of Soils. In Mass spectrometry of soils (eds T.W. Boutton & S. Yamasaki), pp. 205–223. Marcel Dekker, New York.