SEARCH

SEARCH BY CITATION

References

  • 1
    Amthor J.S (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biology 1, 243274.
  • 2
    Arnone J.A. & Körner Ch (1993) Influence of elevated CO2 on canopy development and red–far-red ratios in 2-storied stands of Ricinus communis. Oecologia 94, 510515.
  • 3
    Badeck F.W., Dufrêne E., Epron D., Le Dantec V., Liozon R., Mousseau M., Pontailler J.Y. & Saugier B (1997) Sweet chestnut and beech saplings under elevated CO2. In Impacts of Global Change on Tree Physiology and Forest Ecosystems (eds G.M.J. Mohren, K. Kramer & S. Sabate), pp. 15–25. Kluwer Academic Publishers, Dordrecht.
  • 4
    BassiriRad H., Thomas R.B., Reynolds J.F., Strain B.R (1996) Differential responses of root uptake kinetics of NH4+ and NO3 to enriched atmospheric CO2 concentration in field-grown loblolly pine. Plant, Cell and Environment 19, 367371.
  • 5
    Bazzaz F.A (1990) Response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21, 167196.
  • 6
    Bazzaz F.A., Miao S.L., Wayne P.M (1993) CO2-induced growth enhancements of cooccurring tree species decline at different rates. Oecologia 96, 478482.
  • 7
    Bormann B.T., Bormann F.H., Bowden W.B., Pierce R.S., Hamburg S.P., Wang D., Snyder M.C., Li C.Y., Ingersoll R.C (1993) Rapid N2 fixation in pines, alder, and locust — evidence from the sandbox ecosystem study. Ecology 74, 583598.
  • 8
    Carey E.V., DeLucia E.H., Ball J.T (1996) Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiology 16, 125130.
  • 9
    Ceulemans R (1997) Direct impacts of CO2 and temperature on physiological responses in trees. In Impacts of Global Change on Tree Physiology and Forest Ecosystems (eds G.M.J. Mohren, K. Kramer & S. Sabate), pp. 3–14. Kluwer Academic Publishers, Dordrecht.
  • 10
    Ceulemans R., Jiang X.N., Shao B.Y (1995) Effects of elevated atmospheric CO2 on growth, biomass production and nitrogen allocation of two Populus clones. Journal of Biogeography 22, 261268.
  • 11
    Ceulemans R. & Mousseau M (1994) Tansley Review no. 71: Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127, 425446.
  • 12
    Ceulemans R., Shao B.Y., Jiang X.N. & Kalina J (1996) First- and second-year aboveground growth and productivity of two Populus hybrids grown at ambient and elevated CO2. Tree Physiology 16, 6168.
  • 13
    Ceulemans R., Taylor G., Bosac C., Wilkins D., Besford R.T (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. Journal of Experimental Botany 48, 16811689.
  • 14
    Chaves M.M. & Pereira J.S (1992) Water stress, CO2 and climate change. Journal of Experimental Botany 43, 11311139.
  • 15
    Cipollini M.L. & Drake B.G. & Whigham D (1993) Effects of elevated CO2 on growth and carbon/nutrient balance in the deciduous woody shrub Lindera benzoin (L.) Blume (Lauraceae). Oecologia 96, 339346.
  • 16
    Cole D.W. & Rapp M (1981) Elemental cycling in forest ecosystems. In Dynamic Properties of Forest Ecosystems. (ed. D. E. Reichle), pp. 341–409. Cambridge University Press, London.
  • 17
    Coleman J.S., McConnaughay K.D.M., Bazzaz F.A (1993) Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93, 195200.
  • 18
    Cotrufo M.F., Ineson P., Rowland A.P (1994) Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality. Plant and Soil 163, 121130.
  • 19
    Cotrufo M.F. & Ineson P. & Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4, 4354.
  • 20
    Crookshanks M. & Taylor G. & Broadmeadow M (1998) Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytologist 138, 241250.
  • 21
    Cure J.D. & Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38, 127145.
  • 22
    Curtis P.S (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment 19, 127137.
  • 23
    Curtis P.S., Vogel C.S., Pregitzer K.S., Zak D.R., Teeri J.A (1995) Interacting effects of soil fertility and atmospheric CO2 on leaf growth and carbon gain physiology in Populus×euramericana (Dode) Guinier. New Phytologist 129, 253263.
  • 24
    Curtis P.S. & Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113, 299313.
  • 25
    Curtis P.S., Zak D.R., Pregitzer K.S., Teeri J.A (1994) Above- and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant and Soil 165, 4551.
  • 26
    Day F.P., Weber E.P., Hinkle C.R., Drake B.G (1996) Effects of elevated atmospheric CO2 on fine root length and distribution in an oak–palmetto scrub ecosystem in central Florida. Global Change Biology 2, 143148.
  • 27
    Dixon M., Le Thiec D., Garrec J.P (1995) The growth and gas exchange response of soil-planted Norway spruce [Picea abies (L.) Karst.] and red oak (Quercus rubra L.) exposed to elevated CO2 and to naturally occurring drought. New Phytologist 129, 265273.
  • 28
    Drake B.G., Azcon-Bieto J., Berry J., Bunce J., Dijkstra P., Farrar J., Gifford R.M., Gonzalez-Meler M.A., Koch G., Lambers H., Siedow J. & Wullschleger S (1999) Does elevated CO2 concentration inhibit mitochondrial respiration in green plants? Plant, Cell and Environment 22, 649657.
  • 29
    Drake B.G., Gonzàlez-Meler M.A., Long S.P (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.
  • 30
    Dvorak V. & Oplustilova M (1997) Respiration of woody tissues of Norway spruce in elevated CO2 concentration. In Impacts of Global Change on Tree Physiology and Forest Ecosystems (eds G.M.J. Mohren, K.Kramer & S. Sabate), pp. 47–51. Kluwer Academic Publishers, Dordrecht.
  • 31
    Eamus D., Duff G.A., Berryman C.A (1995) Photosynthetic responses to temperature, light flux-density, CO2 concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under CO2 enrichment. Environmental Pollution 90, 4149.
  • 32
    Eamus D. & Jarvis P.G (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research 19, 155.
  • 33
    Egli P. & Körner Ch (1997) Growth responses to elevated CO2 and soil quality in beech–spruce model ecosystems. Acta Oecologia 18, 343349.
  • 34
    El Kohen A. & Venet L. & Mousseau M (1993) Growth and photosynthesis of two deciduous forest tree species exposed to elevated carbon dioxide. Functional Ecology 7, 480486.
  • 35
    Ellsworth D.S., Oren R., Huang C., Phillips N., Hendrey G.R (1995) Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia 104, 139146.
  • 36
    Epron D. & Liozon R. & Mousseau M (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiology 16, 425432.
  • 37
    Field C.B., Jackson R.B., Mooney H.A (1995) Stomatal responses to increased CO2: implications from the plant to global scale. Plant, Cell and Environment 18, 12141225.
  • 38
    Field C.B. & Mooney H.A (1986) The photosynthesis–nitrogen relationship in wild plants. In On the Economy of Plant Form and Function (ed. T.J. Givnish), pp. 25–55. Cambridge University Press, Cambridge.
  • 39
    Gahrooee F.R (1998) Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Global Change Biology 4, 667677.
  • 40
    Garcia R.L., Idso S.B., Wall G.W., Kimball B.A (1994) Changes in net photosynthesis and growth of Pinus eldarica seedlings in response to atmospheric CO2 enrichment. Plant, Cell and Environment 17, 971978.
  • 41
    Goodfellow J. & Eamus D. & Duff G (1997) Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet–dry tropics of Australia. Tree Physiology 17, 291299.
  • 42
    Goulden M.L., Munger J.W., Fan S.M., Daube B.C., Wofsy S.C (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271, 15761578.
  • 43
    Gregory K.M (1996) Are paleoclimate estimates biased by foliar physiognomic responses to increased atmospheric CO2? Palaeogeography Palaeoclimatology Palaeoecology 124, 3951.
  • 44
    Griffin K.L., Ball J.T., Strain B.R (1996a) Direct and indirect effects of elevated CO2 on whole-shoot respiration in ponderosa pine seedlings. Tree Physiology 16, 3341.
  • 45
    Griffin K.L., Winner W.E., Strain B.R (1996b) Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant, Cell and Environment 19, 729738.
  • 46
    Guak S., Olszyk D.M., Fuchigami L.H., Tingey D.T (1998) Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiology 18, 671679.
  • 47
    Gunderson C.A., Norby R.J., Wullschleger S.D (1993) Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: no loss of photosynthetic enhancement. Plant, Cell and Environment 16, 797807.
  • 48
    Gunderson C.A. & Wullschleger S.D (1994) Photosynthetic acclimation of forest trees to a doubling of atmospheric CO2: a broader perspective. Photosynthesis Research 39, 369388.
  • 49
    Hättenschwiler S. & Körner Ch (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia 113, 104114.
  • 50
    Hättenschwiler S., Miglietta F., Raschi A. & Körner Ch (1997a) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biology 3, 463471.
  • 51
    Hättenschwiler S., Miglietta F., Raschi A. & Körner Ch (1997b) Morphological adjustments of mature Quercus ilex trees to elevated CO2. Acta Oecologia 18, 361365.
  • 52
    Henderson-Sellers A. & McGuffie K. & Gross C (1995) Sensitivity of global climate model simulations to increased stomata resistance and CO2 increases. Journal of Climate 8, 17381756.
  • 53
    Hogan K.P., Fleck I., Bungard R., Cheeseman J.M. & Whitehead D (1997) Effects of elevated CO2 on the utilization of light energy in Nothofagus fusca and Pinus radiata. Journal of Experimental Botany 48, 12891297.
  • 54
    Hogan K.P., Whitehead D., Kallarackal J., Buwalda J.G., Meekings J., Rogers G.N.D (1996) Photosynthetic activity of leaves of Pinus radiata and Nothofagus fusca after 1 year of growth at elevated CO2. Australian Journal of Plant Physiology 23, 623630.
  • 55
    Idso S.B (1991) The aerial fertilization effect of CO2 and its implications for global carbon cycling and maximum greenhouse warming. Bulletin American Meteorological Society 72, 962965.
  • 56
    Idso K.E. & Idso S.B (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years research. Agricultural and Forest Meteorology 69, 153203.
  • 57
    Idso S.B., Idso K.E., Garcia R.L., Kimball B.A., Hoober J.K (1995) Effects of atmospheric CO2 enrichment and foliar methanol application of net photosynthesis of sour orange (Citrus auriantium; Rutaceae) leaves. American Journal of Botany 82, 2630.
  • 58
    Idso S.B. & Kimball B.A (1991) Downward regulation of photosynthesis and growth at high CO2 levels. No evidence for either phenomenon in three-year study of sour orange trees. Plant Physiology 96, 990992.
  • 59
    Idso S.B. & Kimball B.A (1992a) Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees. Plant Physiology 99, 341343.
  • 60
    Idso S.B. & Kimball B.A (1992b) Seasonal fine-root biomass development of sour orange trees grown in atmospheres of ambient and elevated CO2 concentration. Plant, Cell and Environment 15, 337341.
  • 61
    Idso S.B. & Kimball B.A (1993) Tree growth in carbon dioxide enriched air and its implications for global carbon cycling and maximum levels of atmospheric CO2. Global Biogeochemical Cycles 7, 537555.
  • 62
    Idso S.B. & Kimball B.A (1994) Effects of atmospheric CO2 enrichment on biomass accumulation and distribution in Eldarica pine trees. Journal of Experimental Botany 45, 16691672.
  • 63
    Idso S.B. & Kimball B.A (1997) Effects of long-term atmospheric CO2 enrichment on the growth and fruit production of sour orange trees. Global Change Biology 3, 8996.
  • 64
    Idso S.B., Kimball B.A., Akin D.E. & Kridler J (1993b) A general relationship between carbon dioxide-induced reductions in stomatal conductance and concomitant increases in foliage temperature. Environmental and Experimental Botany 33, 443446.
  • 65
    Idso S.B., Kimball B.A., Allen S.G (1991) Net photosynthesis of sour orange trees maintained in atmospheres of ambient and elevated CO2 concentration. Agricultural and Forest Meteorology 54, 95101.
  • 66
    Idso S.B., Kimball B.A., Hendrix D.L (1993a) Air-temperature modifies the size-enhancing effects of atmospheric CO2 enrichment on sour orange tree leaves. Environmental and Experimental Botany 33, 293299.
  • 67
    Idso S.B., Wall G.W., Kimball B.A (1993c) Interactive effects of atmospheric CO2 enrichment and light intensity reductions on net photosynthesis of sour orange tree leaves. Environmental and Experimental Botany 33, 367373.
  • 68
    Ineson P. & Cotrufo M.F (1997) Increasing concentrations of atmospheric CO2 and decomposition processes in forest ecosystems. In Plant Responses to Elevated CO2. Evidence from Natural Springs (eds A. Raschi, F. Miglietta, R. Tognetti & P.R. van Gardingen.), pp. 242–267. Cambridge University Press, Cambridge.
  • 69
    Janssens I.A., Crookshanks M., Taylor G. & Ceulemans R (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in young Scots pine seedlings. Global Change Biology 4, 871878.
  • 70
    Jarvis P.G (1995) Scaling processes and problems. Plant, Cell and Environment 18, 10791089.
  • 71
    Jarvis P.G (1998) Effects of climate change on ecosystem carbon balance. In The Earth's Changing Land, GCTE-LUCC Open Science Conference on Global Change, Abstracts p. 198. Institut Cartografic de Catalunya, Barcelona.
  • 72
    Johnson D.W., Ball J.T., Walker R.F (1997) Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil 190, 2940.
  • 73
    Johnson D., Henderson P.H., Ball J.T., Walker R.F (1996) Effects of CO2 and N on growth and N dynamics in ponderosa pine: results from the first two growing seasons. In Carbon Dioxide and Terrestrial Ecosystems (eds G.W. Koch & H.A. Mooney), pp. 23–40. Academic Press, San Diego.
  • 74
    Karnosky D.F., Podila G.K., Gagnon Z., Pechter P., Akkapeddi A., Sheng Y., Riemenschneider D.E., Coleman M.D., Dickson R.E., Isebrands J.G (1998) Genetic control of responses to interacting tropospheric ozone and CO2 in Populus tremuloides. Chemosphere 36, 807812.
  • 75
    Kellomäki S. & Wang K.-Y (1996) Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiology 16, 765772.
  • 76
    Kellomäki S. & Wang K.-Y (1997a) Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scots pine. Forest Ecology and Management 99, 309326.
  • 77
    Kellomäki S. & Wang K.-Y (1997b) Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. Plant, Cell and Environment 20, 9951006.
  • 78
    Körner Ch (1995) Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant, Cell and Environment 18, 11011110.
  • 79
    Körner Ch. & Arnone J.A (1992).Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257, 16721675.
  • 80
    Körner Ch. & Miglietta F (1994) Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees. Oecologia 99, 343351.
  • 81
    Kramer P.J (1981) Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31, 2933.
  • 82
    Kubiske M.E. & Pregitzer K.S (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16, 351358.
  • 83
    Kubiske M.E., Pregitzer K.S., Mikan C.J., Zak D.R., Maziasz J.L., Teeri J.A (1997) Populus tremuloides photosynthesis and crown architecture in response to elevated CO2 and soil N availability. Oecologia 110, 328336.
  • 84
    Le Thiec D., Dixon M., Loosveldt P., Garrec J.P (1995) Seasonal and annual variations of phosphorus, calcium, potassium and manganese contents in different cross-sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO2. Trees 10, 5562.
  • 85
    Lee H.S.J. & Jarvis P.G (1995) Trees differ from crops and each other in their responses to increases in CO2 concentration. Journal of Biogeography 22, 323330.
  • 86
    Lee H., Overdieck D., Jarvis P.G (1998) Biomass, growth and carbon allocation. In European Forests and Global Change: Likely Impacts of Rising CO2 and Temperature (ed. P.G. Jarvis), chapter 5. Cambridge University Press, Cambridge, UK.
  • 87
    Lewis J.D., Tissue D.T., Strain B.R (1996) Seasonal response of photosynthesis to elevated CO2 in loblolly pine (Pinus taeda L.) over 2 growing seasons. Global Change Biology 2, 103114.
  • 88
    Lincoln D.E., Fajer E.D., Jonson R.H (1993) Plant–insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution 8, 6468.
  • 89
    Lindroth R.L., Roth S., Kruger E.L., Volin J.C., Koss P.A (1997) CO2-mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virus. Global Change Biology 3, 279289.
  • 90
    Long S.P (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell and Environment 14, 729739
  • 91
    Long S.P. & Drake B.G (1991) Effect of the long term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpus olneyi. Plant Physiology 96, 221226.
  • 92
    Marek M.V. & Kalina J. & Matous˘kova M (1995) Response of photosynthetic carbon assimilation of Norway spruce exposed to long-term elevation of CO2 concentration. Photosynthetica 31, 209220.
  • 93
    Martin P (1992) EXE: a climatically sensitive model to study climate change and CO2 enhancement effects on forest. Australian Journal of Botany 40, 717735.
  • 94
    McGuire A.D., Melillo J.M., Joyce L.A (1995) The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annual Review of Ecology and Systematics 26, 473503.
  • 95
    McGuire A.D., Melillo J.M., Kicklighter D.W., Pan Y., Xiao X., Helfrich J., Moore I.I.I.B., Vorosmarty J., Schloss A.L (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochemical Cycles 11, 173189.
  • 96
    Miglietta F., Raschi A., Bettarini I., Resti R. & Selvi F (1993) Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations. Plant, Cell and Environment 16, 873878.
  • 97
    Mooney H.A., Canadell J., Chapin F.S., Ehleriger J., Körner Ch., McMurtrie R., Parton W.J., Pitelka L., Schulze E.-D (1999) Ecosystem physiology responses to global change. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems (eds B.H. Walker, W.L. Steffen, J. Canadell and J.S.I. Ingram), pp. 141–189. Cambridge University Press, Cambridge.
  • 98
    Morison J.I.L (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment 8, 467474.
  • 99
    Mousseau M., Dufrêne E., El Kohen A., Epron D., Godard D., Liozon R., Pontailler J.Y. & Saugier B (1996) Growth strategy and tree response to elevated CO2: a comparison of beech (Fagus sylvatica) and sweet chestnut (Castanea sativa Mill.) In Carbon Dioxide and Terrestrial Ecosystems (eds G.W. Koch & H.A. Mooney), pp. 71–86. Academic Press, San Diego.
  • 100
    Murray M.B. & Ceulemans R (1998). Will tree foliage be larger and live longer? In European Forests and Global Change: Likely Impacts of Rising CO2 and Temperature (ed. P.G. Jarvis), pp. 94–125. Cambridge University Press, Cambridge.
  • 101
    Murray M.B., Smith R.I., Leith I.D., Fowler D., Lee H.S.J., Friend A.D., Jarvis P.G (1994) Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiology 14, 691706.
  • 102
    Norby R.J (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil 165, 920.
  • 103
    Norby R.J (1996) Forest canopy productivity index. Nature381, 564.
  • 104
    Norby R.J (1998) Nitrogen deposition: a component of global change analyses. New Phytologist 139, 189200.
  • 105
    Norby R.J. & O'Neill E.G (1989) Growth dynamics and water use of seedlings of Quercus alba L. in CO2-enriched atmospheres. New Phytologist 111, 491500.
  • 106
    Norby R.J. & O'Neill E.G (1991) Leaf area compensation and nutrient interactions in CO2-enriched yellow-poplar (Liriodendron tulipifera L.) seedlings. New Phytologist 117, 515528.
  • 107
    Norby R.J. & Sigal L.L (1989) Nitrogen fixation in the lichen Lobaria pulmonaria in elevated atmospheric carbon dioxide. Oecologia 79, 566568.
  • 108
    Norby R.J., O'Neill E.G., Luxmoore R.G (1986) Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiology 82, 8389.
  • 109
    Norby R.J., Edwards N.T., Riggs J.S., Abner C.H., Wullschleger S.D., Gunderson C.A (1997) Temperature-controlled open-top chambers for global change research. Global Change Biology 3, 259267.
  • 110
    Norby R.J., Gunderson C.A., Wullschleger S.D., O'Neill E.G., McCracken M.K (1992) Productivity and compensatory response of yellow poplar trees in elevated CO2. Nature 357, 322324.
  • 111
    Norby R.J., Verbrugge M.J., Hartz J.S., Wullschleger S.D., Gunderson C.A., O'Neill E.G., Edwards N.T (1998) Increased temperature has both positive and negative influences on tree growth. In The Earth's Changing Land, GCTE-LUCC Open Science Conference on Global Change, Abstracts, p. 24. Institut Cartografic de Catalunya, Barcelona.
  • 112
    Norby R.J., Wullschleger S.D., Gunderson C.A (1996) Tree responses to elevated CO2 and the implications for forests. In Carbon Dioxide and Terrestrial Ecosystems (eds G.W. Koch & H.A. Mooney), pp. 1–21. Academic Press, San Diego.
  • 113
    Norby R.J., Wullschleger S.D., Gunderson C.A., Nietch C.T (1995) Increased growth efficiency of Quercus alba trees in a CO2-enriched atmosphere. New Phytologist 131, 9197.
  • 114
    O'Neill E.G. & Norby R.J (1996) Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In Carbon Dioxide and Terrestrial Ecosystems (eds G.W. Koch & H.A. Mooney), pp. 87–103. Academic Press, San Diego.
  • 115
    Oechel W.C. & Strain B.R (1985) Native species responses to increased atmospheric carbon dioxide concentration. In Direct Effects of Increasing Carbon Dioxide on Vegetation (eds B.R. Strain & J.D. Cure), pp. 117–154. DOE/ER-0238. U.S. Department of Energy, Washington, D.C.
  • 116
    Overdieck D (1993) Effects of atmospheric CO2 enrichment on CO2 exchange rates of beech stands in small model ecosystems. Water, Soil and Air Pollution 70, 259277.
  • 117
    Paul E.A. & Clark F.E. (1989) Soil Microbiology and Biochemistry. Academic Press, New York.
  • 118
    Peñuelas J., Idso S.B., Ribas A., Kimball B.A (1997) Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytologist 135, 439444.
  • 119
    Pettersson R. & McDonald A.J.S (1994) Effects of nitrogen supply on acclimation of photosynthesis to elevated CO2. Photosynthesis Research 39, 389400.
  • 120
    Pollard D. & Thompson S.L (1995) Use of a land-surface scheme (LSX) in a global climate model — the response to doubling stomatal resistance. Global and Planetary Change 10, 129161.
  • 121
    Poorter H., Roumet C., Campbell B.D (1996) Interspecific variation in the growth response of plants to elevated CO2: a search for functional types. In Carbon Dioxide, Populations, and Communities (eds Ch. Körner & F.A. Bazzaz), pp. 375–412. Academic Press, San Diego.
  • 122
    Pregitzer K.S., Zak D.R., Curtis P.S., Kubiske M.E., Teeri J.A., Vogel C.S (1995) Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129, 579585.
  • 123
    Pritchard S., Peterson C., Runion G.B., Prior S. & Rogers H (1997) Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11, 494503.
  • 124
    Randlett D.L., Zak D.R., Pregitzer K.S., Curtis P.S (1996) Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization. Soil Science Society of America Journal 60, 15711577.
  • 125
    Rastetter E.B., McKane R.B., Shaver G.R., Melillo J.M (1992) Changes in C storage by terrestrial ecosystems: how C–N interactions restrict responses to CO2 and temperature. Water, Air and Soil Pollution 64, 327344.
  • 126
    Rey A. & Jarvis P.G (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Annals of Botany 80, 809816.
  • 127
    Rey A. & Jarvis P.G (1998). Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology 18, 441450.
  • 128
    Rogers H.H., Heck W.W., Heagle A.S (1983) A field technique for the study of plant responses to elevated carbon dioxide concentrations. Journal of the Air Pollution Control Association 33, 4244.
  • 129
    Roth S., Lindroth R.L., Volin J.C., Kruger E.L (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Global Change Biology 4, 419430.
  • 130
    Ruimy A., Field C.B., Herbert D., Kelly R., McMurtrie R.E., Parton W.J., Pierce L.L. & CMEAL participant (1999) Forest and grassland responses to elevated atmospheric CO2: resource use factors from four ecosystem models. Ecological Applications, in press.
  • 131
    Runion G.B., Mitchell R.J., Rogers H.H., Prior S.A., Counts T.K (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of longleaf pine. New Phytologist 137, 681689.
  • 132
    Rygiewicz P.T., Johnson M.G., Ganio L.M., Tingey D.T., Storm M.J (1997) Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant and Soil 189, 275287.
  • 133
    Sage R.F (1994) Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynthesis Research 39, 351368.
  • 134
    Saxe H. & Ellsworth D.S. & Heath J (1998) Tansley review no. 98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139, 395436.
  • 135
    Scarascia-Mugnozza G., De Angelis P., Matteucci G. & Valentini R (1996) Long-term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant, Cell and Environment 19, 643654.
  • 136
    Sellers P.J., Bounoua L., Collatz G.J., Randall D.A., Dazlich D.A., Los S.O., Berry J.A., Fung I., Tucker C.J., Field C.B., Jensen T.G (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 14021406.
  • 137
    Strain B.R (1985) Physiological and ecological controls on carbon sequestering in terrestrial ecosystems. Biogeochemistry 1, 219232.
  • 138
    Stulen I. & den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104/105, 99115.
  • 139
    Surano K.A., Daley P.F., Houpis J.L.J., Shinn J.H., Helms J.A., Palassou R.J., Costella M.P (1986) Growth and physiological responses of Pinus ponderosa Dougl. ex P. Laws. to long-term elevated CO2 concentration. Tree Physiology 2, 243259.
  • 140
    Teskey R.O (1995) A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant, Cell and Environment 18, 565573.
  • 141
    Thomas S.M., Whitehead D., Adams J.A., Reid J.B., Sherlock R.R., Leckie A.C (1996) Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration. Tree Physiology 16, 10151021.
  • 142
    Tingey D.T., Johnson M.G., Phillips D.L., Johnson D.W., Ball J.T (1996) Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tree Physiology 16, 905914.
  • 143
    Tingey D.T., Phillips D.L., Johnson M.G., Storm M.J., Ball J.T (1997) Effects of elevated CO2 and nitrogen on fine root dynamics and fungal growth in seedling Pinus ponderosa. Environmental and Experimental Botany 37, 7383.
  • 144
    Tissue D.T., Griffin K.L., Ball J.T (1999) Photosynthetic adjustment in field-grown ponderosa pine trees after six years exposure to elevated CO2. Tree Physiology, in press.
  • 145
    Tissue D.T., Thomas R.B., Strain B.R (1993) Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly-pine seedlings. Plant, Cell and Environment 16, 859865.
  • 146
    Tissue D.T., Thomas R.B., Strain B.R (1996) Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO2 for 19 months in the field. Tree Physiology 16, 4959.
  • 147
    Tissue D.T., Thomas R.B., Strain B.R (1997) Atmospheric CO2 enrichment increases growth and photosynthesis in Pinus taeda: a 4 year experiment in the field. Plant, Cell and Environment 20, 11231134.
  • 148
    Tognetti R., Giovannelli A., Longobucco A., Miglietta F. & Raschi A (1996) Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy). Annales Des Sciences Forestières 53, 475485.
  • 149
    Turnbull M.H., Tissue D.T., Griffin K.L., Rogers G.N.D. & Whitehead D (1998) Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata Don. is related to age of needles. Plant, Cell and Environment 21, 10191028.
  • 150
    Turner J (1977) Effect of nitrogen availability on nitrogen cycling in a Douglas-fir stand. Forest Science 23, 307316.
  • 151
    Vogel C.S. & Curtis P.S (1995) Leaf gas exchange and nitrogen dynamics of N2-fixing field-grown Alnus glutinosa under elevated atmospheric CO2. Global Change Biology 1, 5561.
  • 152
    Walker R.F., Geisinger D.R., Johnson D.W., Ball J.T (1995) Interactive effects of atmospheric CO2 enrichment and soil N on growth and ectomycorrhizal colonization of ponderosa pine seedlings. Forest Science 41, 491500.
  • 153
    Walker R.F., Geisinger D.R., Johnson D.W., Ball J.T (1997) Elevated atmospheric CO2 and soil N fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil. Plant and Soil 195, 2536.
  • 154
    Wang K.-Y. & Kellomäki S (1997) Stomatal conductance and transpiration in shoots of Scots pine after 4-year exposure to elevated CO2 and temperature. Canadian Journal of Botany 75, 552561.
  • 155
    Wang K.-Y. & Kellomäki S. & Laitinen K (1995) Effects of needle age, long-term temperature and CO2 treatments on the photosynthesis of Scots pine. Tree Physiology 15, 211218.
  • 156
    Wang Y.-P., Rey A., Jarvis P.G (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biology 4, 797807.
  • 157
    Waring R.H. & Schlesinger W.H. (1985) Forest Ecosystems. Concepts and Management. Academic Press, Orlando.
  • 158
    Will R.E. & Ceulemans R (1997) Effects of elevated CO2 concentration on photosynthesis, respiration and carbohydrate status of coppice Populus hybrids. Physiologia Plantarum 100, 933939.
  • 159
    Williams R.S., Lincoln D.E., Norby R.J (1998) Leaf age effects of elevated CO2-grown white oak leaves on spring-feeding lepidopterans. Global Change Biology 4, 235246.
  • 160
    Williams R.S., Lincoln D.E., Thomas R.B (1997) Effects of elevated CO2-grown loblolly pine needles on the growth, consumption, and pupal weight of red-headed pine sawfly reared within open-topped chambers. Global Change Biology 3, 501511.
  • 161
    Wong S.-C. & Dunin F.X (1987) Photosynthesis and transpiration of trees in a eucalypt forest stand: CO2, light and humidity responses. Australian Journal of Plant Physiology 14, 619632.
  • 162
    Woodward F.I., Smith T.M., Emanuel W.R (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9, 471490.
  • 163
    Wullschleger S.D. & Norby R.J (1992) Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO2 enrichment. Canadian Journal of Forest Research 22, 17171721.
  • 164
    Wullschleger S.D., Norby R.J., Gunderson C.A (1992a) Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytologist 121, 515523.
  • 165
    Wullschleger S.D., Norby R.J., Gunderson C.A (1997a) Forest trees and their response to atmospheric CO2 enrichment: A compilation of results. In Advances in Carbon Dioxide Effects Research (eds L.H. Allen Jr, M.B. Kirkham, D.M. Olszyk & C.E. Williams), pp. 79–100. ASA Special Publication no. 61, American Society of Agronomy, Madison,WI.
  • 166
    Wullschleger S.D., Norby R.J., Hanson P.J (1995b) Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiologia Plantarum 93, 4754.
  • 167
    Wullschleger S.D., Norby R.J., Hendrix D.L (1992b) Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology 10, 2131.
  • 168
    Wullschleger S.D., Norby R.J., Love J.C. & Runck C (1997b) Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO2 enrichment. Annals of Botany 80, 289297.
  • 169
    Wullschleger S.D., Post W.M., King A.W (1995a). On the potential of a CO2 fertilization effect in forests: Estimates of the biotic growth factor based on 58 controlled-exposure studies. In Biotic Feedbacks in the Global Climatic System: Will Warming Feed the Warming? (eds G.M. Woodwell & F.T. Mackenzie), pp. 85–107. Oxford University Press, New York.
  • 170
    Zak D.R., Pregitzer K.S., Curtis P.S., Teeri J.A., Fogel R., Randlett D.L (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151, 105117.