• 1
    Beerling D.J., Heath J., Woodward F.I., Mansfield T.A. (1996) Drought–CO2 interactions in trees: observations and mechanisms. New Phytologist 134, 235242.
  • 2
    Berryman C.A., Eamus D., Duff G.A. (1994) Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. Journal of Experimental Botany 274, 539546.
  • 3
    Blatt M.R. & Armstrong F. (1993) Potassium channels of stomatal guard cells: abscisic acid evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191, 330341.
  • 4
    Bunce J.A. (1992) Stomatal conductance, photosynthesis and respiration of temperate deciduous tree species grown with CO2 enrichment. Journal of Experimental Botany 15, 541549.
  • 5
    Bunce J.A. (1998) Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration. Plant, Cell and Environment 21, 115120.
  • 6
    Cheng S.-H., Moore B.D., Seemann J.R. (1998) Effects of short- and long-term elevated CO2 on the expression of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heyhn. Plant Physiology 116, 715723.
  • 7
    Curtis P.S. & Wang X. (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113, 299313.
  • 8
    Drake B.G., Gonzalèz-Meler M.A., Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.
  • 9
    Eamus D. (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell and Environment 14, 843852.
  • 10
    Eamus D. & Jarvis P.G. (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial trees and forest. Advances in Ecological Research 19, 155.
  • 11
    Eamus D. & Narayan A.D. (1989) The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to carbon dioxide, IAA, ABA and calcium in leaves of Solanum melongena. Journal of Experimental Botany 40, 573580.
  • 12
    Epstein E. (1972) The media of plant nutrition. In Mineral Nutrition of Plants: Principles and Perspectives, pp. 29–49. John Wiley & Sons, New York.
  • 13
    Field C.B., Jackson R.B., Mooney H.A. (1995) Stomatal response to increase CO2: implications from the plant to the global scale. Plant, Cell and Environment 18, 12141225.
  • 14
    Fitzsimons P.J. & Weyers J.D.B. (1986) Volume changes of Commelina communis L. guard cell protoplasts in response to K+, light and CO2. Physiologia Plantarum 66, 463468.
  • 15
    Garcia R.L., Long S.P., Wall G.W., Osborne C.P., Kimball B.A., Nie G.Y., Pinter P.J.J.R., Lamorte R.L., Wechsung F. (1998) Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment. Plant, Cell and Environment 21, 659669.
  • 16
    Gilroy S., Fricker M.D., Read N.D., Trewavas A.J. (1991) Role of calcium in signal transduction of Commelina guard cells. The Plant Cell 3, 3333444.
  • 17
    Giraudat J. (1995) Abscisic acid signalling. Current Opinion in Cell Biology 7, 232238.
  • 18
    Gotow K., Kondo N., Syono K. (1982) Effects of CO2 on volume changes of guard cell protoplasts from Vicia faba L. Plant and Cell Physiology 23, 10631070.
  • 19
    Hedrich R., Marten I., Lohse G., Dietrich P., Winter H., Lohaus G., Heldt H.W. (1994) Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. The Plant Journal 6, 741748.
  • 20
    Jarvis P.G. (1995) Scaling processes and problems. Plant, Cell and Environment 18, 10791089.
  • 21
    Koornneef M., Jorna M.L., Brinkhorst-van der Swan D.L.C., Karssen C.M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 61, 385393.
  • 22
    Lascève G., Leymarie J., Vavasseur A. (1997) Alterations in light-induced stomatal opening in a starch-deficient mutant of Arabidopsis thaliana L. deficient in chloroplast phosphoglucomutase activity. Plant, Cell and Environment 20, 350358.
  • 23
    Lemtiri-Chlieh F. & MacRobbie E.A.C. (1994) Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. Journal of Membrane Biology 137, 99107.
  • 24
    Leymarie J., Vavasseur A., Lascève G. (1998) CO2 sensing in stomata of abi1–1 and abi2–1 mutants of Arabidopsis thaliana. Plant Physiology and Biochemistry 36, 539543.
  • 25
    Mansfield T.A. (1976) Delay in the response of stomata to abscisic acid in CO2-free air. Journal of Experimental Botany 27, 559564.
  • 26
    McAinsh M.R., Brownlee C., Hetherington A.M. (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343, 186188.
  • 27
    McAinsh M.R., Brownlee C., Hetherington A.M. (1992) Vizualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cells to abscisic acid. The Plant Cell 4, 11131122.
  • 28
    Morison J.I.L. (1987) Intercellular CO2 concentration and stomatal response to CO2. In Stomatal Function (eds E. Zeiger,, G.D. Farquhar & I.R. Cowan), pp. 229–251. Stanford University Press, Stanford.
  • 29
    Morison J.I.L. (1998) Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49, 443452.
  • 30
    Mott K.A. (1988) Do stomata respond to CO2 concentrations other than intracellular? Plant Physiology 86, 200203.
  • 31
    Pei Z.M., Kuchitsu K., Ward J.M., Schwarz M., Schroeder J.I. (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. The Plant Cell 9, 409423.
  • 32
    Poole I., Weyers J.D.B., Lawson T., Raven J.A. (1996) Variations in stomatal density and index: implications for paleoclimatic reconstructions. Plant, Cell and Environment 19, 705712.
  • 33
    Radoglou K.M., Aphalo P., Jarvis P.G. (1992) Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. Annals of Botany 70, 257264.
  • 34
    Raschke K. (1975) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium. Planta 125, 243259.
  • 35
    Raschke K. (1987) Action of abscisic acid on guard cells. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 253–279. Stanford University Press, Stanford.
  • 36
    Raschke K. & Hedrich R. (1985) Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Planta 163, 105118.
  • 37
    Santrucek J. & Sage R.F. (1996) Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Australian Journal of Plant Physiology 23, 467478.
  • 38
    Schroeder J.I. & Hagiwara S. (1990) Repetitive increases in cytosolic calcium of guard cells by abscisic acid activation of nonselective calcium permeable channels. Proceedings of the National Academy of Sciences of the USA 87, 93059309.
  • 39
    Signora L., Galtier N., Skot L., Lucas H., Foyer C.H. (1998) Over-expression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. Journal of Experimental Botany 49, 669680.
  • 40
    Talbott L.D., Srivastava A., Zeiger E. (1996) Stomata from growth-chamber grown Vicia faba have enhanced sensitivity to CO2. Plant, Cell and Environment 19, 11881194.
  • 41
    Tuba Z., Szente K., Koch J. (1994) Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. Journal of Plant Physiology 144, 661668.
  • 42
    Wardle K. & Short K. (1981) Responses of stomata in epidermal strips of Vicia faba to carbon dioxide and growth hormones when incubated on potassium chloride and potassium iminodiacetate. Journal of Experimental Botany 32, 303309.
  • 43
    Webb A.A.R., McAinsh M.R., Mansfield T.A., Hetherington A.M. (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. The Plant Journal 9, 297304.
  • 44
    Willmer C. & Fricker M. (1996) Perception and transduction of CO2-closing responses. In Stomata (eds M. Black & B. Charlwood), 2nd edn, pp. 285–287. Chapman & Hall, London.
  • 45
    Wong S.-C. (1993) Interaction between elevated atmospheric concentration of CO2 and humidity on plant growth: comparison between cotton and radish. Vegetatio 104/105, 211221.
  • 46
    Woodward F.I. (1989) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617618.
  • 47
    Woodward F.I. & Kelly C.K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311327.